Vol 27, No 2 (2022)
Review paper
Published online: 2022-03-17

open access

Page views 6864
Article views/downloads 1824
Get Citation

Connect on Social Media

Connect on Social Media

FLASH radiotherapy: an emerging approach in radiation therapy

Natalia Matuszak12, Wiktoria Maria Suchorska12, Piotr Milecki13, Marta Kruszyna-Mochalska14, Agnieszka Misiarz5, Jacek Pracz5, Julian Malicki16
Rep Pract Oncol Radiother 2022;27(2):343-351.

Abstract

FLASH radiotherapy (RT) is a technique involving the delivery of ultra-high dose rate radiation to the target. FLASH-RT has been shown to reduce radiation-induced toxicity in healthy tissues without compromising the anti-cancer effects of treatment compared to conventional radiation therapy. In the present article, we review the published data on FLASH-RT and discuss the current state of knowledge of this novel approach. We also highlight the technological constraints and complexity of FLASH-RT and describe the physics underlying this modality, particularly how technology supports energy transfer by ionising radiation (e.g., beam on/off sequence, pulse-energy load, intervals). We emphasise that current preclinical experience is mostly based on FLASH electrons and that clinical application of FLASH-RT is very limited. The incorporation of FLASH-RT into routine clinical radiotherapy will require the development of devices capable of producing FLASH photon beams.

Article available in PDF format

View PDF Download PDF file

References

  1. Hughes JR, Parsons JL. FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Int J Mol Sci. 2020; 21(18).
  2. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014; 6(245): 245ra93.
  3. Bourhis J, Montay-Gruel P, Gonçalves Jorge P, et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother Oncol. 2019; 139: 11–17.
  4. Vozenin MC, Hendry JH, Limoli CL. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin Oncol (R Coll Radiol). 2019; 31(7): 407–415.
  5. Vozenin MC, Baumann M, Coppes RP, et al. FLASH radiotherapy International Workshop. Radiother Oncol. 2019; 139: 1–3.
  6. Wilson JD, Hammond EM, Higgins GS, et al. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold? Front Oncol. 2019; 9: 1563.
  7. Bourhis J, Sozzi WJ, Jorge PG, et al. Treatment of a first patient with FLASH-radiotherapy. Radiother Oncol. 2019; 139: 18–22.
  8. Herrera FG, Bourhis J, Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 2017; 67(1): 65–85.
  9. Bristow RG, Alexander B, Baumann M, et al. Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol. 2018; 19(5): e240–e251.
  10. Petersson K, Jaccard M, Germond JF, et al. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber. Med Phys. 2017; 44(3): 1157–1167.
  11. Lempart M, Blad B, Adrian G, et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiother Oncol. 2019; 139: 40–45.
  12. Montay-Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother Oncol. 2017; 124(3): 365–369.
  13. Symonds P, Jones GDD. FLASH Radiotherapy: The Next Technological Advance in Radiation Therapy? Clin Oncol (R Coll Radiol). 2019; 31(7): 405–406.
  14. Hornsey S, Bewley DK. Hypoxia in mouse intestine induced by electron irradiation at high dose-rates. Int J Radiat Biol Relat Stud Phys Chem Med. 1971; 19(5): 479–483.
  15. Field SB, Bewley DK. Effects of dose-rate on the radiation response of rat skin. Int J Radiat Biol Relat Stud Phys Chem Med. 1974; 26(3): 259–267.
  16. Epp ER, Weiss H, Djordjevic B, et al. The radiosensitivity of cultured mammalian cells exposed to single high intensity pulses of electrons in various concentrations of oxygen. Radiat Res. 1972; 52(2): 324–332.
  17. Weiss H, Epp ER, Heslin JM, et al. Oxygen depletion in cells irradiated at ultra-high dose-rates and at conventional dose-rates. Int J Radiat Biol Relat Stud Phys Chem Med. 1974; 26(1): 17–29.
  18. DEWEY DL, BOAG JW. Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature. 1959; 183(4673): 1450–1451.
  19. Thames HD, Withers HR, Peters LJ, et al. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys. 1982; 8(2): 219–226.
  20. Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982; 8(11): 1981–1997.
  21. Jones B, Dale RG, Deehan C, et al. The role of biologically effective dose (BED) in clinical oncology. Clin Oncol (R Coll Radiol). 2001; 13(2): 71–81.
  22. Jones B, Morgan D. Radiotherapy fractionation in radiobiological modelling in radiation oncology. The British Institute of Radiology, London 2007: 70–71.
  23. Vignati A, Giordanengo S, Fausti F, et al. Beam Monitors for Tomorrow: The Challenges of Electron and Photon FLASH RT. Front Phys. 2020; 8.
  24. Bourhis J, Stapnes S, Weunsch W. Adapting CLIC Tech for FLASH Therapy. https://cerncourier.com/a/adapting-clic-tech-for-flash-therapy/ (2020).
  25. Maxim PG, Tantawi SG, Loo BW. PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiother Oncol. 2019; 139: 28–33.
  26. Lagzda A, Angal-Kalinin D, Jones J, et al. Influence of heterogeneous media on Very High Energy Electron (VHEE) dose penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nucl Instrum Methods Phys Res. 2020; 482: 70–81.
  27. Esplen N, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol. 2020; 65(23): 23TR03.
  28. Buonanno M, Grilj V, Brenner DJ. Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol. 2019; 139: 51–55.
  29. Beyreuther E, Brand M, Hans S, et al. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiother Oncol. 2019; 139: 46–50.
  30. Schmid TE, Dollinger G, Hable V, et al. Relative biological effectiveness of pulsed and continuous 20 MeV protons for micronucleus induction in 3D human reconstructed skin tissue. Radiother Oncol. 2010; 95(1): 66–72.
  31. Auer S, Hable V, Greubel C, et al. Survival of tumor cells after proton irradiation with ultra-high dose rates. Radiat Oncol. 2011; 6: 139.
  32. Girdhani S, Abel E, Katsis A, et al. Abstract LB-280: FLASH: A novel paradigm changing tumor irradiation platform that enhances therapeutic ratio by reducing normal tissue toxicity and activating immune pathways. Cancer Res. 2019; 79.
  33. Small KL, Henthorn NT, Angal-Kalinin D, et al. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci Rep. 2021; 11(1): 3341.
  34. Karsch L, Beyreuther E, Enghardt W, et al. Towards ion beam therapy based on laser plasma accelerators. Acta Oncol. 2017; 56(11): 1359–1366.



Reports of Practical Oncology and Radiotherapy