Vol 27, No 2 (2022)
Research paper
Published online: 2022-03-10

open access

Page views 4794
Article views/downloads 360
Get Citation

Connect on Social Media

Connect on Social Media

Dosimetry of small photon fields in the presence of bone heterogeneity using MAGIC polymer gel, Gafchromic film, and Monte Carlo simulation

Werya Parwaie12, Ghazale Geraily23, Ghazal Mehri-Kakavand4, Somayeh Babaloui2, Samira Rezvani2, Mohamad Pursamimi4
Rep Pract Oncol Radiother 2022;27(2):226-234.

Abstract

Background: The presence of heterogeneity within the radiation field increases the challenges of small field dosimetry. In this study, the performance of MAGIC polymer gel was evaluated in the dosimetry of small fields beyond bone heterogeneity.

Materials and methods: Circular field sizes of 5, 10, 20 and 30 mm were used and Polytetrafluoroethylene with density of 2.2 g/cm3 was used as the bone equivalent material. The PDD curves, beam profiles, and penumbra widths were measured using MAGIC polymer gel, EBT2 film, and Monte Carlo simulation.

Results: The maximum differences between MAGIC and EBT2 are 6.1, 4.7, 2.4, and 2.2 for PDD curves at 5, 10, 20, and 30 mm circular fields, respectively. The dose differences and distance to agreement between MAGIC and MC were within 1.89%/0.46 mm, 1.66%/0.43 mm, 1.28%/0.77 mm, and 1.31%/0.81 mm for beam profile values behind bone heterogeneity at 5, 10, 20, and 30 mm field sizes, respectively.

Conclusion: The results presented that the MAGIC polymer gel dosimeter is a proper instrument for dosimetry beyond high density heterogeneity.

Article available in PDF format

View PDF Download PDF file

References

  1. Diwanji TP, Mohindra P, Vyfhuis M, et al. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy. Transl Lung Cancer Res. 2017; 6(2): 131–147.
  2. Alfonso R, Andreo P, Capote R, et al. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008; 35(11): 5179–5186.
  3. Parwaie W, Refahi S, Ardekani MA, et al. Different Dosimeters/Detectors Used in Small-Field Dosimetry: Pros and Cons. J Med Signals Sens. 2018; 8(3): 195–203.
  4. Stathakis S, Esquivel C, Quino L, et al. Accuracy of the Small Field Dosimetry Using the Acuros XB Dose Calculation Algorithm within and beyond Heterogeneous Media for 6 MV Photon Beams. Int J Med Phys Clin Engin Radiat Oncol. 2012; 01(03): 78–87.
  5. Latifi K, Oliver J, Baker R, et al. Study of 201 non-small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithm. Int J Radiat Oncol Biol Phys. 2014; 88(5): 1108–1113.
  6. Arnfield MR, Otto K, Aroumougame VR, et al. The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy. Med Phys. 2005; 32(1): 12–18.
  7. Oliveira L, Calcina CG, Parada M, et al. Ferrous Xylenol Gel measurements for 6 and 10 MV photons in small field sizes. Brazil J Phys. 2007; 37(3b): 1141–1146.
  8. Underwood TSA, Thompson J, Bird L, et al. Validation of a prototype DiodeAir for small field dosimetry. Phys Med Biol. 2015; 60(7): 2939–2953.
  9. Burke E, Poppinga D, Schönfeld AA, et al. The practical application of scintillation dosimetry in small-field photon-beam radiotherapy. Z Med Phys. 2017; 27(4): 324–333.
  10. Guo PY, Adamovics JA, Oldham M. Characterization of a new radiochromic three-dimensional dosimeter. Med Phys. 2006; 33(5): 1338–1345.
  11. Calcina CS, de Oliveira LN, de Almeida CE, et al. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber. Phys Med Biol. 2007; 52(5): 1431–1439.
  12. Pappas E, Maris TG, Zacharopoulou F, et al. Small SRS photon field profile dosimetry performed using a PinPoint air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and polymer gel dosimetry. Analysis and intercomparison. Med Phys. 2008; 35(10): 4640–4648.
  13. Kang YN, Choi B, Jang HS, et al. Development of BANG-3?? Polymer Gel Dosimetry System in Small Radiosurgical Fields. J Korean Phys Soc. 2011; 59(6): 3422–3427.
  14. Shih TY, Wu J, Shih CT, et al. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography. PLoS One. 2016; 11(3): e0151300.
  15. Low DA, Parikh P, Dempsey JF, et al. Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams. Med Phys. 2003; 30(7): 1706–1711.
  16. Laub WU, Kaulich TW, Nüsslin F. A diamond detector in the dosimetry of high-energy electron and photon beams. Phys Med Biol. 1999; 44(9): 2183–2192.
  17. Rustgi SN, Frye DM. Dosimetric characterization of radiosurgical beams with a diamond detector. Med Phys. 1995; 22(12): 2117–2121.
  18. Allahverdi M, Sarkhosh M, Aghili M, et al. Evaluation of treatment planning system of brachytherapy according to dose to the rectum delivered. Radiat Prot Dosimetry. 2012; 150(3): 312–315.
  19. Wong CJ, Ackerly T, He C, et al. Small field size dose-profile measurements using gel dosimeters, gafchromic films and micro-thermoluminescent dosimeters. Radiat Measurements. 2009; 44(3): 249–256.
  20. Fong PM, Keil DC, Does MD, et al. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol. 2001; 46(12): 3105–3113.
  21. Mohammad A, Nedaie H, YarAhmadi M, et al. Dosimetric Evaluation of Heterogeneities in Small Circular Fields of 6 MV Photon Beams with EBT2 and EDR2 Films: Comparison with Monte Carlo Calculation. J Modern Phys. 2014; 05(16): 1608–1616.
  22. Palmans H, Andreo P, Huq MS, et al. Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS-483, the IAEA-AAPM international Code of Practice for reference and relative dose determination. Med Phys. 2018; 45(11): e1123–e1145.
  23. Sevcik A, Adliene D, Laurikaitiene J, et al. Low energy deposition patterns in irradiated phantom with metal artefacts inside: a comparison between FLUKA Monte Carlo simulation and GafChromic EBT2 film measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2020; 478: 142–149.
  24. Hermida-López M, Sánchez-Artuñedo D, Rodríguez M, et al. Monte Carlo simulation of conical collimators for stereotactic radiosurgery with a 6 MV flattening-filter-free photon beam. Med Phys. 2021; 48(6): 3160–3171.
  25. Wilcox EE, Daskalov GM. Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6 MV photon fields smaller than 4 cm produced by Cyberknife. Med Phys. 2008; 35(6): 2259–2266.
  26. Ramirez JLV, Chen F, Nicolucci P, et al. Dosimetry of small radiation field in inhomogeneous medium using alanine/EPR minidosimeters and PENELOPE Monte Carlo simulation. Radiat Measurements. 2011; 46(9): 941–944.
  27. Parwaie W, Yarahmadi M, Nedaie HA, et al. Evaluation of MRI-based MAGIC polymer gel dosimeter in small photon fields. Int J Radiat Res. 2016; 14(1): 59–65.
  28. Yarahmadi M, Nedaie H, Allahverdi M, et al. Small photon field dosimetry using EBT2 Gafchromic film and Monte Carlo simulation. Int J Radiat Res. 2013; 11(4): 215.



Reports of Practical Oncology and Radiotherapy