Assessment of the Monitor Unit Objective tool for VMAT in the Eclipse treatment planning system
Abstract
Aim
This work aims to achieve the highest possible monitor units (MU) reduction using the MU Objective tool included in the Eclipse treatment planning system, while preserving the plan quality.
Background
The treatment planning system Eclipse (Varian Medical Systems, Palo Alto, CA) includes a control mechanism for the number of monitor units of volumetric modulated arc therapy (VMAT) plans, named the MU Objective tool.
Material and methods
Forty prostate plans, 20 gynecological plans and 20 head and neck plans designed with VMAT were retrospectively studied. Each plan (base plan) was optimized without using the MU Objective tool, and it was re-optimized with different values of the Maximum MU (MaxMU) parameter of the MU Objective tool. MU differences were analyzed with a paired samples t-test and changes in plan quality were assessed with a set of parameters for OARs and PTVs.
Results
The average relative MU difference [[mml:math altimg="si2.gif"]][[mml:mrow]][[mml:mo stretchy="false"]]([[/mml:mo]][[mml:mover accent="true"]][[mml:mrow]][[mml:mstyle mathvariant="normal"]][[mml:mi]]Δ[[/mml:mi]][[/mml:mstyle]][[mml:mi]]M[[/mml:mi]][[mml:mi]]U[[/mml:mi]][[/mml:mrow]][[mml:mo stretchy="true"]]¯[[/mml:mo]][[/mml:mover]][[mml:mo stretchy="false"]])[[/mml:mo]][[/mml:mrow]][[/mml:math]] considering all treatment sites, was the highest when MaxMU[[ce:hsp sp="0.25"/]]=[[ce:hsp sp="0.25"/]]400 (−4.2%, p[[ce:hsp sp="0.25"/]]<[[ce:hsp sp="0.25"/]]0.001). For prostate plans, the lowest [[mml:math altimg="si3.gif"]][[mml:mrow]][[mml:mover accent="true"]][[mml:mrow]][[mml:mstyle mathvariant="normal"]][[mml:mi]]Δ[[/mml:mi]][[/mml:mstyle]][[mml:mi]]M[[/mml:mi]][[mml:mi]]U[[/mml:mi]][[/mml:mrow]][[mml:mo stretchy="true"]]¯[[/mml:mo]][[/mml:mover]][[/mml:mrow]][[/mml:math]] was obtained (−3.7%, p[[ce:hsp sp="0.25"/]]<[[ce:hsp sp="0.25"/]]0.001). For head and neck plans [[mml:math altimg="si3.gif"]][[mml:mrow]][[mml:mover accent="true"]][[mml:mrow]][[mml:mstyle mathvariant="normal"]][[mml:mi]]Δ[[/mml:mi]][[/mml:mstyle]][[mml:mi]]M[[/mml:mi]][[mml:mi]]U[[/mml:mi]][[/mml:mrow]][[mml:mo stretchy="true"]]¯[[/mml:mo]][[/mml:mover]][[/mml:mrow]][[/mml:math]] was −7.3% (p[[ce:hsp sp="0.25"/]]<[[ce:hsp sp="0.25"/]]0.001) and for gynecological plans [[mml:math altimg="si3.gif"]][[mml:mrow]][[mml:mover accent="true"]][[mml:mrow]][[mml:mstyle mathvariant="normal"]][[mml:mi]]Δ[[/mml:mi]][[/mml:mstyle]][[mml:mi]]M[[/mml:mi]][[mml:mi]]U[[/mml:mi]][[/mml:mrow]][[mml:mo stretchy="true"]]¯[[/mml:mo]][[/mml:mover]][[/mml:mrow]][[/mml:math]] was 7.0% (p[[ce:hsp sp="0.25"/]]=[[ce:hsp sp="0.25"/]]0.002). Although similar MU reductions were observed for both sites, for some gynecological plans maximum differences were greater than 10%. All the assessed parameters for PTVs and OARs sparing showed average differences below 2%.
Conclusion
For the three studied clinical sites, establishing MaxMU[[ce:hsp sp="0.25"/]]=[[ce:hsp sp="0.25"/]]400 led to the optimum MU reduction, maintaining the original dose distribution and dosimetric parameters practically unaltered.
Keywords: VMATRapidArcEclipseMonitor units