open access

Vol 13, No 1 (2008)
Untitled
Published online: 2008-01-01
Submitted: 2007-03-06
Get Citation

Array

Alireza Shirazi, Seied Rabie Mahdavi, Ali Khodadadee, Mostafa Ghaffory, Asghar Mesbahi
DOI: 10.1016/S1507-1367(10)60078-8
·
Rep Pract Oncol Radiother 2008;13(1):23-28.

open access

Vol 13, No 1 (2008)
Untitled
Published online: 2008-01-01
Submitted: 2007-03-06

Abstract

Aim

Thermoluminescent dosimeters (TLDs) have various applications in non-primary beam dosimetry. Monte Carlo simulation of TLD response was done in low energy beams to improve its clinical use in scattered beam dosimetry.

Materials/Methods

TLD material made from LiF doped with Mg and Ti sized 3.1×3.1×1mm3 was used for experimental measurements as well as modelling by MCNP-4c Monte Carlo simulation. TLDs were irradiated for different doses of beam qualities ranging from 120, 180, 200, 250 to 300kVp x-rays generated from an orthovoltage machine and 1.25MeV gamma rays from a Co-60 teletherapy unit at reference depth in a water phantom. The simulation conditions were the same as experimental conditions. The calibration factor, (CF)q, and its quality dependence factor, (FCXo), were defined as: [[mml:math altimg="si1.gif"]] [[mml:mrow]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]C[[/mml:mi]] [[mml:mi]]F[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mi]]q[[/mml:mi]] [[mml:mi]] [[/mml:mi]] [[mml:mo]]=[[/mml:mo]] [[mml:mi]] [[/mml:mi]] [[mml:mtext]]Calibration[[/mml:mtext]] [[mml:mi]] [[/mml:mi]] [[mml:mtext]]Dose[[/mml:mtext]] [[mml:mo]]/[[/mml:mo]] [[mml:mi]]T[[/mml:mi]] [[mml:mi]]L[[/mml:mi]] [[mml:mo]],[[/mml:mo]] [[mml:mi]] [[/mml:mi]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:msubsup]] [[mml:mi]]F[[/mml:mi]] [[mml:mrow]] [[mml:mi]]c[[/mml:mi]] [[mml:mi]]o[[/mml:mi]] [[/mml:mrow]] [[mml:mi]]X[[/mml:mi]] [[/mml:msubsup]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mi]] [[/mml:mi]] [[mml:mo]]=[[/mml:mo]] [[mml:mfrac]] [[mml:mrow]] [[mml:mi]]T[[/mml:mi]] [[mml:mi]]L[[/mml:mi]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]X[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mo]]/[[/mml:mo]] [[mml:msub]] [[mml:mi]]D[[/mml:mi]] [[mml:mrow]] [[mml:mi]]m[[/mml:mi]] [[mml:mi]]e[[/mml:mi]] [[mml:mi]]d[[/mml:mi]] [[/mml:mrow]] [[/mml:msub]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]X[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[/mml:mrow]] [[mml:mrow]] [[mml:mi]]T[[/mml:mi]] [[mml:mi]]L[[/mml:mi]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]X[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mo]]/[[/mml:mo]] [[mml:msub]] [[mml:mi]]D[[/mml:mi]] [[mml:mrow]] [[mml:mi]]m[[/mml:mi]] [[mml:mi]]e[[/mml:mi]] [[mml:mi]]d[[/mml:mi]] [[/mml:mrow]] [[/mml:msub]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]C[[/mml:mi]] [[mml:mi]]o[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[/mml:mrow]] [[/mml:mfrac]] [[/mml:mrow]] [[/mml:math]]

Results

The normalized values of measured quality dependence factors for different x-ray beams were 1.28, 1.24, 1.16, 1.07 and 1.03 for different beam qualities, respectively. Comparatively, the MCNP simulated findings were 1.134, 1.96, 1.139, 1.052 and 1.034. The change of calibration factor with energy followed the equation CF=B0+B1E+B2E2+B3E3, where CF and E are calibration factor and energy (keV), respectively. B0, B1, B2, B3 are constants.

Conclusions

Our findings showed significant deviation of true dose value when TLDs are calibrated at different beam qualities. The greatest deviation was 19.9±2.1% in beam quality of 120kVp. Obtaining a dose response curve may be helpful to calculate the calibration factor with more precision.

Abstract

Aim

Thermoluminescent dosimeters (TLDs) have various applications in non-primary beam dosimetry. Monte Carlo simulation of TLD response was done in low energy beams to improve its clinical use in scattered beam dosimetry.

Materials/Methods

TLD material made from LiF doped with Mg and Ti sized 3.1×3.1×1mm3 was used for experimental measurements as well as modelling by MCNP-4c Monte Carlo simulation. TLDs were irradiated for different doses of beam qualities ranging from 120, 180, 200, 250 to 300kVp x-rays generated from an orthovoltage machine and 1.25MeV gamma rays from a Co-60 teletherapy unit at reference depth in a water phantom. The simulation conditions were the same as experimental conditions. The calibration factor, (CF)q, and its quality dependence factor, (FCXo), were defined as: [[mml:math altimg="si1.gif"]] [[mml:mrow]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]C[[/mml:mi]] [[mml:mi]]F[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mi]]q[[/mml:mi]] [[mml:mi]] [[/mml:mi]] [[mml:mo]]=[[/mml:mo]] [[mml:mi]] [[/mml:mi]] [[mml:mtext]]Calibration[[/mml:mtext]] [[mml:mi]] [[/mml:mi]] [[mml:mtext]]Dose[[/mml:mtext]] [[mml:mo]]/[[/mml:mo]] [[mml:mi]]T[[/mml:mi]] [[mml:mi]]L[[/mml:mi]] [[mml:mo]],[[/mml:mo]] [[mml:mi]] [[/mml:mi]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:msubsup]] [[mml:mi]]F[[/mml:mi]] [[mml:mrow]] [[mml:mi]]c[[/mml:mi]] [[mml:mi]]o[[/mml:mi]] [[/mml:mrow]] [[mml:mi]]X[[/mml:mi]] [[/mml:msubsup]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mi]] [[/mml:mi]] [[mml:mo]]=[[/mml:mo]] [[mml:mfrac]] [[mml:mrow]] [[mml:mi]]T[[/mml:mi]] [[mml:mi]]L[[/mml:mi]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]X[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mo]]/[[/mml:mo]] [[mml:msub]] [[mml:mi]]D[[/mml:mi]] [[mml:mrow]] [[mml:mi]]m[[/mml:mi]] [[mml:mi]]e[[/mml:mi]] [[mml:mi]]d[[/mml:mi]] [[/mml:mrow]] [[/mml:msub]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]X[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[/mml:mrow]] [[mml:mrow]] [[mml:mi]]T[[/mml:mi]] [[mml:mi]]L[[/mml:mi]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]X[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[mml:mo]]/[[/mml:mo]] [[mml:msub]] [[mml:mi]]D[[/mml:mi]] [[mml:mrow]] [[mml:mi]]m[[/mml:mi]] [[mml:mi]]e[[/mml:mi]] [[mml:mi]]d[[/mml:mi]] [[/mml:mrow]] [[/mml:msub]] [[mml:mo stretchy="false"]]([[/mml:mo]] [[mml:mi]]C[[/mml:mi]] [[mml:mi]]o[[/mml:mi]] [[mml:mo stretchy="false"]])[[/mml:mo]] [[/mml:mrow]] [[/mml:mfrac]] [[/mml:mrow]] [[/mml:math]]

Results

The normalized values of measured quality dependence factors for different x-ray beams were 1.28, 1.24, 1.16, 1.07 and 1.03 for different beam qualities, respectively. Comparatively, the MCNP simulated findings were 1.134, 1.96, 1.139, 1.052 and 1.034. The change of calibration factor with energy followed the equation CF=B0+B1E+B2E2+B3E3, where CF and E are calibration factor and energy (keV), respectively. B0, B1, B2, B3 are constants.

Conclusions

Our findings showed significant deviation of true dose value when TLDs are calibrated at different beam qualities. The greatest deviation was 19.9±2.1% in beam quality of 120kVp. Obtaining a dose response curve may be helpful to calculate the calibration factor with more precision.

Get Citation

Keywords

TLD response; calibration; quality dependence; MCNP

About this article
Title

Array

Journal

Reports of Practical Oncology and Radiotherapy

Issue

Vol 13, No 1 (2008)

Pages

23-28

Published online

2008-01-01

DOI

10.1016/S1507-1367(10)60078-8

Bibliographic record

Rep Pract Oncol Radiother 2008;13(1):23-28.

Keywords

TLD response
calibration
quality dependence
MCNP

Authors

Alireza Shirazi
Seied Rabie Mahdavi
Ali Khodadadee
Mostafa Ghaffory
Asghar Mesbahi

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: journals@viamedica.pl