open access

Vol 9, No 2 (2023)
Review paper
Published online: 2023-06-13
Get Citation

Antirheumatic drugs and cardiovascular disease in rheumatoid arthritis

Zoltán Szekanecz1, Gabriella Szűcs1, György Kerekes2
·
Rheumatology Forum 2023;9(2):49-62.
Affiliations
  1. Department od Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
  2. Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

open access

Vol 9, No 2 (2023)
Review
Published online: 2023-06-13

Abstract

There is increased cardiovascular (CV) morbidity and mortality in rheumatoid arthritis (RA) and other rheumatic and musculoskeletal diseases (RMDs). Systemic inflammation is highly involved in atherogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs), primarily COX-2 inhibitors might increase CV risk. Corticosteroids might act as a double-edged sword as they exert both beneficial and negative effectson the CV system. NSAIDs and corticosteroids are anti-inflammatory, but, on the other hand, they might be potentially atherogenic. Conventional synthetic DMARDs (csDMARDs), such as antimalarials, methotrexate, sulfasalazine, leflunomide and cyclosporine A have good CV safety, however, leflunomide and cyclosporine A might cause hypertension. Biologic DMARDs, by suppressing inflammation and disease activity, might either reduce CV risk or at least not cause any harm in that respect. Recently, tofacitinib and most likely other Janus kinase inhibitors have been associated with increased CV risk, at least in RMD patients with high CV risk at baseline. In clinical practice, EULAR and other recommendations guide the rheumatologist when screening for and managing CV comorbidities.

Abstract

There is increased cardiovascular (CV) morbidity and mortality in rheumatoid arthritis (RA) and other rheumatic and musculoskeletal diseases (RMDs). Systemic inflammation is highly involved in atherogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs), primarily COX-2 inhibitors might increase CV risk. Corticosteroids might act as a double-edged sword as they exert both beneficial and negative effectson the CV system. NSAIDs and corticosteroids are anti-inflammatory, but, on the other hand, they might be potentially atherogenic. Conventional synthetic DMARDs (csDMARDs), such as antimalarials, methotrexate, sulfasalazine, leflunomide and cyclosporine A have good CV safety, however, leflunomide and cyclosporine A might cause hypertension. Biologic DMARDs, by suppressing inflammation and disease activity, might either reduce CV risk or at least not cause any harm in that respect. Recently, tofacitinib and most likely other Janus kinase inhibitors have been associated with increased CV risk, at least in RMD patients with high CV risk at baseline. In clinical practice, EULAR and other recommendations guide the rheumatologist when screening for and managing CV comorbidities.

Get Citation

Keywords

rheumatoid arthritis; RMDs; atherosclerosis; cardiovascular disease; antirheumatic drugs; csDMARDs; bDMARDs; tsDMARDs

About this article
Title

Antirheumatic drugs and cardiovascular disease in rheumatoid arthritis

Journal

Rheumatology Forum

Issue

Vol 9, No 2 (2023)

Article type

Review paper

Pages

49-62

Published online

2023-06-13

Page views

1357

Article views/downloads

227

DOI

10.5603/RF.2023.0010

Bibliographic record

Rheumatology Forum 2023;9(2):49-62.

Keywords

rheumatoid arthritis
RMDs
atherosclerosis
cardiovascular disease
antirheumatic drugs
csDMARDs
bDMARDs
tsDMARDs

Authors

Zoltán Szekanecz
Gabriella Szűcs
György Kerekes

References (135)
  1. Szekanecz Z, Kerekes G, Der H, et al. Accelerated atherosclerosis in rheumatoid arthritis. Ann N Y Acad Sci. 2007; 1108: 349–358.
  2. Shoenfeld Y, Gerli R, Doria A, et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation. 2005; 112(21): 3337–3347.
  3. Kaplan MJ. Management of cardiovascular disease risk in chronic inflammatory disorders. Nat Rev Rheumatol. 2009; 5(4): 208–217.
  4. Agca R, Heslinga SC, Rollefstad S, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017; 76(1): 17–28.
  5. Drosos GC, Vedder D, Houben E, et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2022; 81(6): 768–779.
  6. Błyszczuk P, Szekanecz Z. Pathogenesis of ischaemic and non-ischaemic heart diseases in rheumatoid arthritis. RMD Open. 2020; 6(1).
  7. Peters MJL, van Halm VP, Voskuyl AE, et al. Does rheumatoid arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A prospective study. Arthritis Rheum. 2009; 61(11): 1571–1579.
  8. Avina-Zubieta JA, Thomas J, Sadatsafavi M, et al. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012; 71(9): 1524–1529.
  9. Szekanecz Z, Kerekes G, Végh E, et al. Autoimmune atherosclerosis in 3D: How it develops, how to diagnose and what to do. Autoimmun Rev. 2016; 15(7): 756–769.
  10. Szekanecz Z, Kerekes G, Kardos Z, et al. Mechanisms of inflammatory atherosclerosis in rheumatoid arthritis. Curr Immunol Rev. 2016; 12: 35–46.
  11. Gonzalez-Gay MA, Gonzalez-Juanatey C, Martin J. Rheumatoid arthritis: a disease associated with accelerated atherogenesis. Semin Arthritis Rheum. 2005; 35(1): 8–17.
  12. Atzeni F, Rodríguez-Carrio J, Popa CD, et al. Cardiovascular effects of approved drugs for rheumatoid arthritis. Nat Rev Rheumatol. 2021; 17(5): 270–290.
  13. Gonzalez A, Maradit Kremers H, Crowson CS, et al. The widening mortality gap between rheumatoid arthritis patients and the general population. Arthritis Rheum. 2007; 56(11): 3583–3587.
  14. Atzeni F, Turiel M, Caporali R, et al. The effect of pharmacological therapy on the cardiovascular system of patients with systemic rheumatic diseases. Autoimmun Rev. 2010; 9(12): 835–839.
  15. Roubille C, Richer V, Starnino T, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015; 74(3): 480–489.
  16. Gasparyan AY, Ayvazyan L, Cocco G, et al. Adverse cardiovascular effects of antirheumatic drugs: implications for clinical practice and research. Curr Pharm Des. 2012; 18(11): 1543–1555.
  17. Smolen JS, Landewé RBM, Bergstra SA, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023; 82(1): 3–18.
  18. Szekanecz Z, Kerekes G, Soltész P, et al. Vascular effects of biologic agents in RA and spondyloarthropathies. Nat Rev Rheumatol. 2009; 5(12): 677–684.
  19. Myasoedova E, Crowson CS, Kremers HM, et al. Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis. 2011; 70(3): 482–487.
  20. Liu Yj, Wang Zg, Li Zl, et al. Effect of arthroscopic debridement for adolescent ankylosing spondylitis with early hip-joint disease [article in Chinese]. Zhonghua Yi Xue Za Zhi. 2010; 90(15): 1048–1050.
  21. Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006; 332(7553): 1302–1308.
  22. McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA. 2006; 296(13): 1633–1644.
  23. Nurmohamed MT, van Halm VP, Dijkmans BAC. Cardiovascular risk profile of antirheumatic agents in patients with osteoarthritis and rheumatoid arthritis. Drugs. 2002; 62(11): 1599–1609.
  24. Scott PA, Kingsley GH, Smith CM, et al. Non-steroidal anti-inflammatory drugs and myocardial infarctions: comparative systematic review of evidence from observational studies and randomised controlled trials. Ann Rheum Dis. 2007; 66(10): 1296–1304.
  25. Nissen SE, Yeomans ND, Solomon DH, et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med. 2016; 375(26): 2519–2529.
  26. Tsai WC, Ou TT, Yen JH, et al. Long-term frequent use of non-steroidal anti-inflammatory drugs might protect patients with ankylosing spondylitis from cardiovascular diseases: a nationwide case-control study. PLoS One. 2015; 10(5): e0126347.
  27. Wanders A, Heijde Dv, Landewé R, et al. Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum. 2005; 52(6): 1756–1765.
  28. Ardoin SP, Sundy JS. Update on nonsteriodal anti-inflammatory drugs. Curr Opin Rheumatol. 2006; 18(3): 221–226.
  29. Sfikakis PP, Bournia VK, Kitas G, et al. Do non-steroidal anti-inflammatory drugs increase or decrease cardiovascular risk in patients with rheumatoid arthritis? Clin Exp Rheumatol. 2014; 32(6 Suppl 87): S8–S9.
  30. Lindhardsen J, Gislason GH, Jacobsen S, et al. Non-steroidal anti-inflammatory drugs and risk of cardiovascular disease in patients with rheumatoid arthritis: a nationwide cohort study. Ann Rheum Dis. 2014; 73(8): 1515–1521.
  31. Goodson NJ, Brookhart AM, Symmons DP, et al. Non-steroidal anti-inflammatory drug use does not appear to be associated with increased cardiovascular mortality in patients with inflammatory polyarthritis: results from a primary care based inception cohort of patients. Ann Rheum Dis. 2009; 68(3): 367–372.
  32. Peters MJL, Symmons DPM, McCarey D, et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis. 2010; 69(2): 325–331.
  33. Nurmohamed M. EULAR recommendation update on cardiovascular disease in RA. Ann Rheum Dis. 2015; 74(Suppl 2): 9.
  34. Bruce IN. Cardiovascular disease in lupus patients: should all patients be treated with statins and aspirin? Best Pract Res Clin Rheumatol. 2005; 19(5): 823–838.
  35. Roos MA, Gennero L, Denysenko T, et al. Microparticles in physiological and in pathological conditions. Cell Biochem Funct. 2010; 28(7): 539–548.
  36. Maxwell SR, Moots RJ, Kendall MJ. Corticosteroids: do they damage the cardiovascular system? Postgrad Med J. 1994; 70(830): 863–870.
  37. Buttgereit F, Burmester GR, Lipworth BJ. Inflammation, glucocorticoids and risk of cardiovascular disease. Nat Clin Pract Rheumatol. 2009; 5(1): 18–19.
  38. Konijn N, van Tu, Den Ui, et al. Prednisolone causes dose related unfavourable effects on body composition in early rheumatoid arthritis patients during the first year of treatment. Ann Rheum Dis. 2015; 74(Suppl 2): 239.
  39. Petri M, Lakatta C, Magder L, et al. Effect of prednisone and hydroxychloroquine on coronary artery disease risk factors in systemic lupus erythematosus: a longitudinal data analysis. Am J Med. 1994; 96(3): 254–259.
  40. Karp I, Abrahamowicz M, Fortin PR, et al. Recent corticosteroid use and recent disease activity: independent determinants of coronary heart disease risk factors in systemic lupus erythematosus? Arthritis Rheum. 2008; 59(2): 169–175.
  41. del Rincón I, Battafarano DF, Restrepo JF, et al. Glucocorticoid dose thresholds associated with all-cause and cardiovascular mortality in rheumatoid arthritis. Arthritis Rheumatol. 2014; 66(2): 264–272.
  42. van Sijl AM, Boers M, Voskuyl AE, et al. Confounding by indication probably distorts the relationship between steroid use and cardiovascular disease in rheumatoid arthritis: results from a prospective cohort study. PLoS One. 2014; 9(1): e87965.
  43. Boers M. Drugs and cardiovascular risk in inflammatory arthritis: another case of glucocorticoid-bashing? Ann Rheum Dis. 2015; 74(5): e33.
  44. Boers M, Hartman L, Opris-Belinski D, et al. Low dose, add-on prednisolone in patients with rheumatoid arthritis aged 65+: the pragmatic randomised, double-blind placebo-controlled GLORIA trial. Ann Rheum Dis. 2022; 81(7): 925–936.
  45. Ajeganova S, Svensson B, Hafström I, et al. Low-dose prednisolone treatment of early rheumatoid arthritis and late cardiovascular outcome and survival: 10-year follow-up of a 2-year randomised trial. BMJ Open. 2014; 4(4): e004259.
  46. Toms TE, Panoulas VF, Douglas KMJ, et al. Lack of association between glucocorticoid use and presence of the metabolic syndrome in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther. 2008; 10(6): R145.
  47. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010; 69(1): 20–28.
  48. Rempenault C, Combe B, Barnetche T, et al. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2018; 77(1): 98–103.
  49. Kerr G, Aujero M, Richards J, et al. Associations of hydroxychloroquine use with lipid profiles in rheumatoid arthritis: pharmacologic implications. Arthritis Care Res (Hoboken). 2014; 66(11): 1619–1626.
  50. D'Andrea E, Desai RJ, He M, et al. Cardiovascular risks of hydroxychloroquine vs methotrexate in patients with rheumatoid arthritis. J Am Coll Cardiol. 2022; 80(1): 36–46.
  51. van Halm VP, Nurmohamed MT, Twisk JWR, et al. Disease-modifying antirheumatic drugs are associated with a reduced risk for cardiovascular disease in patients with rheumatoid arthritis: a case control study. Arthritis Res Ther. 2006; 8(5): R151.
  52. Furuichi K, Wada T, Sakai N, et al. Distinct expression of CCR1 and CCR5 in glomerular and interstitial lesions of human glomerular diseases. Am J Nephrol. 2000; 20(4): 291–299.
  53. Peters MJL, Symmons DPM, McCarey D, et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis. 2010; 69(2): 325–331.
  54. Van Doornum S, McColl G, Wicks IP. Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum. 2002; 46(4): 862–873.
  55. Westlake SL, Colebatch AN, Baird J, et al. The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford). 2010; 49(2): 295–307.
  56. Micha R, Imamura F, Wyler von Ballmoos M, et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol. 2011; 108(9): 1362–1370.
  57. Marks JL, Edwards CJ. Protective effect of methotrexate in patients with rheumatoid arthritis and cardiovascular comorbidity. Ther Adv Musculoskelet Dis. 2012; 4(3): 149–157.
  58. Suissa S, Bernatsky S, Hudson M. Antirheumatic drug use and the risk of acute myocardial infarction. Arthritis Rheum. 2006; 55(4): 531–536.
  59. Choi HK, Hernán MA, Seeger JD, et al. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002; 359(9313): 1173–1177.
  60. De Vecchis R, Baldi C, Palmisani L. Protective effects of methotrexate against ischemic cardiovascular disorders in patients treated for rheumatoid arthritis or psoriasis: novel therapeutic insights coming from a meta-analysis of the literature data. Anatol J Cardiol. 2016; 16(1): 2–9.
  61. Ridker PM, Everett BM, Pradhan A, et al. CIRT Investigators. Low-Dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019; 380(8): 752–762.
  62. Moreira DM, Lueneberg ME, da Silva RL, et al. MethotrexaTE THerapy in ST-Segment Elevation MYocardial InfarctionS: a randomized double-blind, placebo-controlled trial (TETHYS trial). J Cardiovasc Pharmacol Ther. 2017; 22(6): 538–545.
  63. Feng H, Li XY, Zheng JR, et al. Inhibition of the nuclear factor-kappaB signaling pathway by leflunomide or triptolide also inhibits the anthralin-induced inflammatory response but does not affect keratinocyte growth inhibition. Biol Pharm Bull. 2005; 28(9): 1597–1602.
  64. Minoretti P, Bruno A, Di Vito C, et al. Leflunomide as an antiatherogenic drug. Med Hypotheses. 2007; 68(5): 1175–1176.
  65. Grisar J, Aringer M, Köller MD, et al. Leflunomide inhibits transendothelial migration of peripheral blood mononuclear cells. Ann Rheum Dis. 2004; 63(12): 1632–1637.
  66. Kellner H, Bornholdt K, Hein G. Leflunomide in the treatment of patients with early rheumatoid arthritis — results of a prospective non-interventional study. Clin Rheumatol. 2010; 29(8): 913–920.
  67. Tanaka R, Takahashi Y, Kodama A, et al. Suppression of CCR5-tropic HIV type 1 infection by OX40 stimulation via enhanced production of β-chemokines. AIDS Res Hum Retroviruses. 2010; 26(10): 1147–1154.
  68. Robert N, Wong GWk, Wright JM. Effect of cyclosporine on blood pressure. Cochrane Database Syst Rev. 2010(1): CD007893.
  69. Roubille C, Martel-Pelletier J, Haraoui B, et al. Biologics and the cardiovascular system: a double-edged sword. Antiinflamm Antiallergy Agents Med Chem. 2013; 12(1): 68–82.
  70. Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med. 1999; 340(2): 115–126.
  71. Grisar J, Aletaha D, Steiner CW, et al. Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy. Ann Rheum Dis. 2007; 66(10): 1284–1288.
  72. Manfredi AA, Baldini M, Camera M, et al. Anti-TNFα agents curb platelet activation in patients with rheumatoid arthritis. Ann Rheum Dis. 2016; 75(8): 1511–1520.
  73. Jacobsson LTH, Turesson C, Gülfe A, et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J Rheumatol. 2005; 32(7): 1213–1218.
  74. Westlake SL, Colebatch AN, Baird J, et al. Tumour necrosis factor antagonists and the risk of cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford). 2011; 50(3): 518–531.
  75. Dixon WG, Watson KD, Lunt M, et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007; 56(9): 2905–2912.
  76. Greenberg JD, Furer V, Farkouh ME. Cardiovascular safety of biologic therapies for the treatment of RA. Nat Rev Rheumatol. 2011; 8(1): 13–21.
  77. Barnabe C, Martin BJ, Ghali WA. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2011; 63(4): 522–529.
  78. Ljung L, Askling J, Rantapää-Dahlqvist S, et al. The risk of acute coronary syndrome in rheumatoid arthritis in relation to tumour necrosis factor inhibitors and the risk in the general population: a national cohort study. Arthritis Res Ther. 2014; 16(3): R127.
  79. Giles JT, Sattar N, Gabriel S, et al. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 2020; 72(1): 31–40.
  80. Ytterberg SR, Bhatt DL, Mikuls TR, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022; 386(4): 316–326.
  81. Sarzi-Puttini P, Atzeni F, Shoenfeld Y, et al. TNF-alpha, rheumatoid arthritis, and heart failure: a rheumatological dilemma. Autoimmun Rev. 2005; 4(3): 153–161.
  82. Ridker PM. High-sensitivity C-reactive protein, inflammation, and cardiovascular risk: from concept to clinical practice to clinical benefit. Am Heart J. 2004; 148(Suppl 1): S19–S26.
  83. Kerekes G, Szekanecz Z, Der H, et al. Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: a multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J Rheumatol. 2008; 35(3): 398–406.
  84. Robertson J, Porter D, Sattar N, et al. Interleukin-6 blockade raises LDL via reduced catabolism rather than via increased synthesis: a cytokine-specific mechanism for cholesterol changes in rheumatoid arthritis. Ann Rheum Dis. 2017; 76(11): 1949–1952.
  85. Protogerou AD, Zampeli E, Fragiadaki K, et al. A pilot study of endothelial dysfunction and aortic stiffness after interleukin-6 receptor inhibition in rheumatoid arthritis. Atherosclerosis. 2011; 219(2): 734–736.
  86. Rao VU, Pavlov A, Klearman M, et al. An evaluation of risk factors for major adverse cardiovascular events during tocilizumab therapy. Arthritis Rheumatol. 2015; 67(2): 372–380.
  87. Singh S, Fumery M, Singh AG, et al. Comparative risk of cardiovascular events with biologic and synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2020; 72(4): 561–576.
  88. Szekanecz Z, Koch AE, Kunkel SL, et al. Cytokines in rheumatoid arthritis. Potential targets for pharmacological intervention. Drugs Aging. 1998; 12(5): 377–390.
  89. Ikonomidis I, Tzortzis S, Andreadou I, et al. Increased benefit of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ Cardiovasc Imaging. 2014; 7(4): 619–628.
  90. Ikonomidis I, Lekakis JP, Nikolaou M, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008; 117(20): 2662–2669.
  91. Ridker PM, Howard CP, Walter V, et al. Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation. 2012; 126(23): 2739–2748.
  92. Schlesinger N, Alten RE, Bardin T, et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis. 2012; 71(11): 1839–1848.
  93. Brogan PA, Hofer M, Kuemmerle-Deschner JB, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009; 360(23): 2416–2425.
  94. Howard C, Noe A, Skerjanec A, et al. Safety and tolerability of canakinumab, an IL-1β inhibitor, in type 2 diabetes mellitus patients: a pooled analysis of three randomised double-blind studies. Cardiovasc Diabetol. 2014; 13: 94.
  95. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017; 377(12): 1119–1131.
  96. Ridker PM, MacFadyen JG, Everett BM, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018; 391(10118): 319–328.
  97. Gravallese EM, Schett G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol. 2018; 14(11): 631–640.
  98. Kerschbaumer A, Smolen JS, Dougados M, et al. Pharmacological treatment of psoriatic arthritis: a systematic literature research for the 2019 update of the EULAR recommendations for the management of psoriatic arthritis. Ann Rheum Dis. 2020; 79(6): 778–786.
  99. Ramiro S, Nikiphorou E, Sepriano A, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann Rheum Dis. 2022; 82(1): 19–34.
  100. Gossec L, Baraliakos X, Kerschbaumer A, et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann Rheum Dis. 2020; 79(6): 700–712.
  101. Kerekes G, Soltész P, Dér H, et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin Rheumatol. 2009; 28(6): 705–710.
  102. Gonzalez-Juanatey C, Llorca J, Vazquez-Rodriguez TR, et al. Short-term improvement of endothelial function in rituximab-treated rheumatoid arthritis patients refractory to tumor necrosis factor alpha blocker therapy. Arthritis Rheum. 2008; 59(12): 1821–1824.
  103. Hsue PY, Scherzer R, Grunfeld C, et al. Depletion of B-cells with rituximab improves endothelial function and reduces inflammation among individuals with rheumatoid arthritis. J Am Heart Assoc. 2014; 3(5): e001267.
  104. Kerekes G, Soltész P, Dér H, et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin Rheumatol. 2009; 28(6): 705–710.
  105. Gürcan HM, Keskin DB, Stern JNH, et al. A review of the current use of rituximab in autoimmune diseases. Int Immunopharmacol. 2009; 9(1): 10–25.
  106. Harrold LR, Reed GW, Magner R, et al. Comparative effectiveness and safety of rituximab versus subsequent anti-tumor necrosis factor therapy in patients with rheumatoid arthritis with prior exposure to anti-tumor necrosis factor therapies in the United States Corrona registry. Arthritis Res Ther. 2015; 17(1): 256.
  107. Nurmohamed M, Choy E, Lula S, et al. The impact of biologics and tofacitinib on cardiovascular risk factors and outcomes in patients with rheumatic disease: a systematic literature review. Drug Saf. 2018; 41(5): 473–488.
  108. Gottenberg JE, Morel J, Perrodeau E, et al. Comparative effectiveness of rituximab, abatacept, and tocilizumab in adults with rheumatoid arthritis and inadequate response to TNF inhibitors: prospective cohort study. BMJ. 2019; 364: l67.
  109. Winthrop KL, Saag K, Cascino MD, et al. Long-term safety of rituximab in rheumatoid arthritis: analysis from the SUNSTONE registry. Arthritis Care Res (Hoboken. 2018; 71(8): 993–1003.
  110. Sharif K, Watad A, Bragazzi NL, et al. Anterior ST-elevation myocardial infarction induced by rituximab infusion: A case report and review of the literature. J Clin Pharm Ther. 2017; 42(3): 356–362.
  111. Sherer Y, Shoenfeld Y. Mechanisms of disease: atherosclerosis in autoimmune diseases. Nat Clin Pract Rheumatol. 2006; 2(2): 99–106.
  112. Kobezda T, Ghassemi-Nejad S, Mikecz K, et al. Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol. 2014; 10(3): 160–170.
  113. Maxwell L, Singh JA. Abatacept for rheumatoid arthritis. Cochrane Database Syst Rev. 2009; 2009(4): CD007277.
  114. Zhang J, Xie F, Yun H, et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann Rheum Dis. 2016; 75(10): 1813–1818.
  115. Jin Y, Kang EHa, Brill G, et al. Cardiovascular (CV) risk after initiation of abatacept versus TNF inhibitors in rheumatoid arthritis patients with and without baseline CV disease. J Rheumatol. 2018; 45(9): 1240–1248.
  116. Kang EH, Jin Y, Brill G, et al. Comparative cardiovascular risk of abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: a multidatabase cohort study. J Am Heart Assoc. 2018; 7(3): e007393.
  117. Vyas D, O'Dell KM, Bandy JL, et al. Tofacitinib: the first Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother. 2013; 47(11): 1524–1531.
  118. Yamaoka K, Tanaka Y. Targeting the Janus kinases in rheumatoid arthritis: focus on tofacitinib. Expert Opin Pharmacother. 2014; 15(1): 103–113.
  119. Oh YB, Ahn M, Lee SM, et al. Inhibition of Janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice. Exp Mol Med. 2013; 45(5): e23.
  120. Soós B, Hamar A, Pusztai A, et al. Effects of tofacitinib therapy on arginine and methionine metabolites in association with vascular pathophysiology in rheumatoid arthritis: A metabolomic approach. Front Med (Lausanne). 2022; 9: 1011734.
  121. Nash P, Kerschbaumer A, Dörner T, et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: a consensus statement. Ann Rheum Dis. 2021; 80(1): 71–87.
  122. van Vollenhoven RF, Fleischmann R, Cohen S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012; 367(6): 508–519.
  123. Souto A, Salgado E, Maneiro JR, et al. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. Arthritis Rheumatol. 2015; 67(1): 117–127.
  124. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017; 13(4): 234–243.
  125. Mease P, Charles-Schoeman C, Cohen S, et al. Incidence of venous and arterial thromboembolic events reported in the tofacitinib rheumatoid arthritis, psoriasis and psoriatic arthritis development programmes and from real-world data. Ann Rheum Dis. 2020; 79(11): 1400–1413.
  126. Szekanecz Z, Hamar A, Soós B. Safety issues of JAK inhibitors in rheumatoid arthritis (Hungarian). Immunol Quarterly (Budapest). 2021; 13(1): 5–20.
  127. Szekanecz Z. Pro-inflammatory cytokines in atherosclerosis. Isr Med Assoc J. 2008; 10(7): 529–530.
  128. Hamar A, Hascsi Z, Pusztai A, et al. Prospective, simultaneous assessment of joint and vascular inflammation by PET/CT in tofacitinib-treated patients with rheumatoid arthritis: associations with vascular and bone status. RMD Open. 2021; 7(3).
  129. Charles-Schoeman C, Buch MH, Dougados M, et al. Risk of major adverse cardiovascular events with tofacitinib versus tumour necrosis factor inhibitors in patients with rheumatoid arthritis with or without a history of atherosclerotic cardiovascular disease: a post hoc analysis from ORAL Surveillance. Ann Rheum Dis. 2023; 82(1): 119–129.
  130. Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis. 2017; 76(7): 1253–1262.
  131. Cohen SB, van Vollenhoven RF, Winthrop KL, et al. Safety profile of upadacitinib in rheumatoid arthritis: integrated analysis from the SELECT phase III clinical programme. Ann Rheum Dis. 2021; 80(3): 304–311.
  132. Genovese MC, Winthrop K, Tanaka Y, et al. THU0202 integrated safety analysis of filgotinib treatment for rheumatoid arthritis from 7 clinical trials. Ann Rheum Dis. 2020; 79(Suppl 1): 324–325.
  133. Genovese M, Smolen JS, Takeuchi T, et al. Safety profile of baricitinib for the treatment of rheumatoid arthritis up to 8.4 years: an updated integrated safety analysis. Ann Rheum Dis. 2020; 79(Suppl 1): 638.
  134. Xie W, Huang Y, Xiao S, et al. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: systematic review and meta-analysis of randomised controlled trials. Ann Rheum Dis. 2019; 78(8): 1048–1054.
  135. EMA confirms measures to minimise risk of serious side effects with Janus kinase inhibitors for chronic inflammatory disorders. https://wwwemaeuropaeu/en/news/ema-confirms-measures-minimise-risk-serious-side-effects-janus-kinase-inhibitors-chronic (2022).

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl