Vol 4, No 4 (2018)
Review paper
Published online: 2019-02-12

open access

Page views 715
Article views/downloads 967
Get Citation

Connect on Social Media

Connect on Social Media

The role of T lymphocytes in the pathogenesis of systemic sclerosis and new therapeutic perspectives

Olga Gumkowska-Sroka1, Przemysław Jacek Kotyla2
Forum Reumatol 2018;4(4):212-218.

Abstract

Systemic sclerosis is a chronic, systemic connective tissue disease, the pathogenesis of which includes, interalia, abnormalities of the immune system with both innate and adaptive responses. Many scientific studies indicate the key role of T cells in the pathogenesis of the disease. A better understanding of these mechanisms creates the possibility of new therapeutic interventions.

Forum Reumatol. 2018, tom 4, nr 4: 212–218

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Kowal-Bielecka O, Kuryliszin-Moskal A. Twardzina układowa. Reumatologia. 2012; 50(2): 124–129.
  2. Jimenez SA, Derk CT. Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med. 2004; 140(1): 37–50.
  3. Zuber JP, Spertini F. Immunological basis of systemic sclerosis. Rheumatology (Oxford). 2006; 45 Suppl 3: iii23–iii25.
  4. Kalogerou A, Gelou E, Mountantonakis S, et al. Early T cell activation in the skin from patients with systemic sclerosis. Ann Rheum Dis. 2005; 64(8): 1233–1235.
  5. Sakkas LI, Chikanza IC, Platsoucas CD. Mechanisms of Disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nat Clin Pract Rheumatol. 2006; 2(12): 679–685.
  6. Sakkas LI, Platsoucas CD. Is systemic sclerosis an antigen-driven T cell disease? Arthritis Rheum. 2004; 50(6): 1721–1733.
  7. Gołab J, Kamiński R. Dojrzewanie limfocytów. . In: Gołab J, Jakóbisiak M, Lasek W, Stokłosa T. ed. Immunologia. Wydawnictwo Naukowe PWN, Warszawa 2008: 153–171.
  8. Ptak W, Ptak M, Szczepanik M. Limfocyty B i T oraz ich subpopulacje. In: Podstawy immunologii. PZWL, Warszawa 2017.
  9. Ptak W, Ptak M, Szczepanik M. Odporność komórkowa mediowana przez limfocyty T CD4+ Th1 i ICD8+ Tc. In: Podstawy immunologii . PZWL, Warszawa 2017.
  10. Kalogerou A, Gelou E, Mountantonakis S, et al. Early T cell activation in the skin from patients with systemic sclerosis. Ann Rheum Dis. 2005; 64(8): 1233–1235.
  11. Klein S, Kretz CC, Ruland V, et al. Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma. Ann Rheum Dis. 2011; 70(8): 1475–1481.
  12. Prescott RJ, Freemont AJ, Jones CJ, et al. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992; 166(3): 255–263.
  13. Sakkas LI, Xu B, Artlett CM, et al. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol. 2002; 168(7): 3649–3659.
  14. Johnson KL, Nelson JL, Furst DE, et al. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum. 2001; 44(8): 1848–1854.
  15. Szaryńska M. Mikrochimeryzm płodowo- matczyny i jego znaczenie kliniczne. Post Biol Kom. 2007; 34: 85–102.
  16. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol. 2011; 300(5): G723–G728.
  17. O'Reilly S, Hügle T, van Laar JM. T cells in systemic sclerosis: a reappraisal. Rheumatology (Oxford). 2012; 51(9): 1540–1549.
  18. Higashi-Kuwata N, Makino T, Inoue Y, et al. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp Dermatol. 2009; 18(8): 727–729.
  19. Barsotti S, Bruni C, Orlandi M, et al. One year in review 2017: systemic sclerosis. Clinical and Experimental Rheumatology. 2017.
  20. Kaviratne M, Hesse M, Leusink M, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol. 2004; 173(6): 4020–4029.
  21. Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999; 103(6): 779–788.
  22. Rankin AL, Mumm JB, Murphy E, et al. IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol. 2010; 184(3): 1526–1535.
  23. Barsotti S, Stagnaro C, Della Rossa A, et al. Systemic sclerosis: a critical digest of the recent literature. Clin Exp Rheumatol. 2015; 33(Suppl 91): S3–S14.
  24. Parel Y, Aurrand-Lions M, Scheja A, et al. Presence of CD4+CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. Arthritis Rheum. 2007; 56(10): 3459–3467.
  25. Atamas SP, Yurovsky VV, Wise R, et al. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum. 1999; 42(6): 1168–1178.
  26. Medsger TA, Ivanco DE, Kardava L, et al. GATA-3 up-regulation in CD8+ T cells as a biomarker of immune dysfunction in systemic sclerosis, resulting in excessive interleukin-13 production. Arthritis Rheum. 2011; 63(6): 1738–1747.
  27. Sato S, Hasegawa M, Takehara K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci. 2001; 27(2): 140–146.
  28. Krasimirova E, Velikova T, Ivanova-Todorova E, et al. Treg/Th17 cell balance and phytohaemagglutinin activation of T lymphocytes in peripheral blood of systemic sclerosis patients. World J Exp Med. 2017; 7(3): 84–96.
  29. Almanzar G, Klein M, Schmalzing M, et al. Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis. Int Arch Allergy Immunol. 2016; 171(2): 141–154.
  30. Truchetet ME, Brembilla NC, Montanari E, et al. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res Ther. 2011; 13(5): R166.
  31. Slobodin G, Ahmad MS, Rosner I, et al. Regulatory T cells (CD4(+)CD25(bright)FoxP3(+)) expansion in systemic sclerosis correlates with disease activity and severity. Cell Immunol. 2010; 261(2): 77–80.
  32. Radstake TR, van Bon L, Broen J, et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFbeta expression. PLoS One. 2009; 4(6): e5981.
  33. Mendoza FA, Mansoor M, Jimenez SA. Treatment of Rapidly Progressive Systemic Sclerosis: Current and Futures Perspectives. Expert Opin Orphan Drugs. 2016; 4(1): 31–47.
  34. Asano Y. Recent advances in the treatment of skin involvement in systemic sclerosis. Inflamm Regen. 2017; 37: 12.
  35. Baron M. Targeted Therapy in Systemic Sclerosis. Rambam Maimonides Med J. 2016; 7(4).
  36. Ciechomska M, van Laar J, O'Reilly S. Current frontiers in systemic sclerosis pathogenesis. Exp Dermatol. 2015; 24(6): 401–406.
  37. Fukasawa C, Kawaguchi Y, Harigai M, et al. Increased CD40 expression in skin fibroblasts from patients with systemic sclerosis (SSc): role of CD40-CD154 in the phenotype of SSc fibroblasts. Eur J Immunol. 2003; 33(10): 2792–2800.
  38. Inomata M, Nishioka Y, Azuma A. Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis. Core Evid. 2015; 10: 89–98.