Vol 4, No 2 (2018)
Review paper
Published online: 2018-06-20

open access

Page views 973
Article views/downloads 11854
Get Citation

Connect on Social Media

Connect on Social Media

Budowa i funkcja ludzkich antygenów zgodności tkankowej. Część 2. Funkcja antygenów zgodności tkankowej

Krzysztof Wiktorowicz1, Krzysztof Kaszkowiak1
Forum Reumatol 2018;4(2):87-94.

Abstract

Antygeny zgodności tkankowej odgrywają kluczową rolę w regulacji aktywności układu immunologicznego. Prezentacja antygenów egzogennych (pochodzących z białek wewnątrzkomórkowych) w kontekście klasycznych MHC klasy II pomocniczym limfocytom T umożliwia indukcję odpowiedzi immunologicznej. Rozpoznanie przez cytotoksyczne limfocyty T prezentowanych przez klasyczne MHC klasy I endogennych peptydów pochodzących z wewnątrzkomórkowych patogenów skutkuje zabiciem zakażonej komórki. Wysoki polimorfizm antygenów HLA zapewnia rozpoznanie szerokiego repertuaru peptydów, a więc także różnego rodzaju czynników infekcyjnych, co warunkuje skuteczną eliminację patogenu z ustroju.

Forum Reumatol. 2018, tom 4, nr 2: 87–94

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Apostolopoulos V, Yuriev E, Lazoura E, et al. MHC and MHC‑like molecules: Structural perspectives on the design of molecular vaccines. Human Vaccines. 2014; 4(6): 400–409.
  2. Kangueane P. Major Histocompatibility Complex (MHC) and Peptide Binding. Bioinformation Discovery. 2009: 111–130.
  3. Yaneva R, Schneeweiss C, Zacharias M, et al. Peptide binding to MHC class I and II proteins: new avenues from new methods. Mol Immunol. 2010; 47(4): 649–657.
  4. Norbury CC. Defining cross presentation for a wider audience. Curr Opin Immunol. 2016; 40: 110–116.
  5. van Endert P. Intracellular recycling and cross-presentation by MHC class I molecules. Immunol Rev. 2016; 272(1): 80–96.
  6. Paulsson KM, Wang P. haperones and folding of MHC class I molecules in the endoplasmic reticulum. Biochim. Biophys. Acta. 2003; 1641(1): 1–12.
  7. Cresswell P, Ackerman AL, Giodini A, et al. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev. 2005; 207: 145–157.
  8. Thomas C, Tampé R. Proofreading of Peptide-MHC Complexes through Dynamic Multivalent Interactions. Front Immunol. 2017; 8: 65.
  9. Blees A, Januliene D, Hofmann T, et al. Structure of the human MHC-I peptide-loading complex. Nature. 2017; 551(7681): 525–528.
  10. Seyffer F, Tampé R. ABC transporters in adaptive immunity. Biochim Biophys Acta. 2015; 1850(3): 449–460.
  11. Gadola SD, Moins-Teisserenc HT, Trowsdale J, et al. TAP deficiency syndrome. Clin Exp Immunol. 2000; 121(2): 173–178.
  12. Apps R, Meng Z, Del Prete GQ, et al. Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. J Immunol. 2015; 194(8): 3594–3600.
  13. Oliveira CC, van Hall T. Importance of TAP-independent processing pathways. Mol Immunol. 2013; 55(2): 113–116.
  14. Mishto M, Liepe J. Post-Translational Peptide Splicing and T Cell Responses. Trends Immunol. 2017; 38(12): 904–915.
  15. Apcher S, Prado Martins R, Fåhraeus R. The source of MHC class I presented peptides and its implications. Curr Opin Immunol. 2016; 40: 117–122.
  16. Yang C, Schmidt M. Cutting through complexity: the proteolytic properties of alternate immunoproteasome complexes. Chem Biol. 2014; 21(4): 435–436.
  17. Eskandari SK, Seelen MAJ, Lin G, et al. The immunoproteasome: An old player with a novel and emerging role in alloimmunity. Am J Transplant. 2017; 17(12): 3033–3039.
  18. Evnouchidou I, Weimershaus M, Saveanu L, et al. ERAP1-ERAP2 dimerization increases peptide-trimming efficiency. J Immunol. 2014; 193(2): 901–908.
  19. Vitulano C, Tedeschi V, Paladini F, et al. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis. Clin Exp Immunol. 2017; 190(3): 281–290.
  20. Neerincx A, Boyle LH. Properties of the tapasin homologue TAPBPR. Curr Opin Immunol. 2017; 46: 97–102.
  21. Morito D, Nagata K. Pathogenic Hijacking of ER-Associated Degradation: Is ERAD Flexible? Mol Cell. 2015; 59(3): 335–344.
  22. Heegaard NHH. beta(2)-microglobulin: from physiology to amyloidosis. Amyloid. 2009; 16(3): 151–173.
  23. Donaldson JG, Williams DB. Intracellular assembly and trafficking of MHC class I molecules. Traffic. 2009; 10(12): 1745–1752.
  24. Deffit SN, Blum JS. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation. Mol Immunol. 2015; 68(2 Pt A): 85–88.
  25. Schröder B. The multifaceted roles of the invariant chain CD74--More than just a chaperone. Biochim Biophys Acta. 2016; 1863(6 Pt A): 1269–1281.
  26. Wieczorek M, Abualrous ET, Sticht J, et al. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol. 2017; 8: 292.
  27. Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015; 15(4): 203–216.
  28. Kelly A, Trowsdale J. Introduction: MHC/KIR and governance of specificity. Immunogenetics. 2017; 69(8-9): 481–488.
  29. Robinson JH, Delvig AA. Diversity in MHC class II antigen presentation. Immunology. 2002; 105(3): 252–262.
  30. Persson G, Melsted WN, Nilsson LL, et al. HLA class Ib in pregnancy and pregnancy-related disorders. Immunogenetics. 2017; 69(8-9): 581–595.
  31. Jucaud V, Ravindranath MH, Terasaki PI. Immunobiology of HLA Class-Ib Molecules in Transplantation. SOJ Immunology. 2015; 3(4): 1–15.
  32. Mosaad YM. Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand J Immunol. 2015; 82(4): 283–306.
  33. Baranwal AK, Mehra NK. Major Histocompatibility Complex Class I Chain-Related A (MICA) Molecules: Relevance in Solid Organ Transplantation. Front Immunol. 2017; 8: 182.
  34. Chen D, Gyllensten U. MICA polymorphism: biology and importance in cancer. Carcinogenesis. 2014; 35(12): 2633–2642.
  35. Keller AN, Corbett AJ, Wubben JM, et al. MAIT cells and MR1-antigen recognition. Curr. Opin. Immunol. 2017; 46: 66–74.
  36. Van Kaer L, Wu L, Joyce S. Mechanisms and Consequences of Antigen Presentation by CD1. Trends Immunol. 2016; 37(11): 738–754.
  37. Van Rhijn I, Godfrey DI, Rossjohn J, et al. Lipid and small-molecule display by CD1 and MR1. Nat Rev Immunol. 2015; 15(10): 643–654.
  38. Chapman SJ, Hill AVS. Human genetic susceptibility to infectious disease. Nat Rev Genet. 2012; 13(3): 175–188.
  39. Liu J, Ye Z, Mayer JG, et al. Phenome-wide association study maps new diseases to the human major histocompatibility complex region. J Med Genet. 2016; 53(10): 681–689.
  40. Prugnolle F, Manica A, Charpentier M, et al. Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol. 2005; 15(11): 1022–1027.
  41. Sanchez-Mazas A, Lemaître JF, Currat M. Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments. Philos Trans R Soc Lond B Biol Sci. 2012; 367(1590): 830–839.
  42. Garamszegi LZ. Global distribution of malaria-resistant MHC-HLA alleles: the number and frequencies of alleles and malaria risk. Malar J. 2014; 13: 349.
  43. Ravenhall M, Campino S, Sepúlveda N, et al. in collaboration with MalariaGEN. Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern Tanzania. PLoS Genet. 2018; 14(1): e1007172.
  44. Radwan J. Ewolucja zmienności genów głównego kompleksu zgodności tkankowej. Nauka. 2012; 4: 155–162.
  45. Blomhoff A, Olsson M, Johansson S, et al. Linkage disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype specific manner assessed mainly by DRB1*03 and DRB1*04 haplotypes. Genes Immun. 2006; 7(2): 130–140.
  46. Alter I, Gragert L, Fingerson S, et al. HLA class I haplotype diversity is consistent with selection for frequent existing haplotypes. PLoS Comput Biol. 2017; 13(8): e1005693.
  47. Wegner KM, Kalbe M, Schaschl H, et al. Parasites and individual major histocompatibility complex diversity--an optimal choice? Microbes Infect. 2004; 6(12): 1110–1116.
  48. Buhler S, Nunes JM, Sanchez-Mazas A. HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection. Immunogenetics. 2016; 68(6-7): 401–416.
  49. Eizaguirre C, Yeates SE, Lenz TL, et al. MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol Ecol. 2009; 18(15): 3316–3329.
  50. Qiao Z, Powell JE, Evans DM. MHC-Dependent Mate Selection within 872 Spousal Pairs of European Ancestry from the Health and Retirement Study. Genes (Basel). 2018; 9(1).
  51. Winternitz J, Abbate JL, Huchard E, et al. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis. Mol Ecol. 2017; 26(2): 668–688.
  52. Saphire-Bernstein S, Larson C, Gildersleeve K, et al. Genetic compatibility in long-term intimate relationships: partner similarity at major histocompatibility complex (MHC) genes may reduce in-pair attraction. Evolution and Human Behavior. 2017; 38(2): 190–196.