Tom 20, Nr 1 (2023)
Artykuł przeglądowy
Opublikowany online: 2023-02-21
Pobierz cytowanie

Rola oreksyn w patofizjologii uzależnień — podstawy teoretyczne i implikacje kliniczne

Miłosz Jan Gołyszny1, Joanna Kidoń2, Kinga Zorychta3, Barbara Grabowska3, Laura Smolik3, Monika Stanek3, Aleksandra Strach3, Karolina Kopeć3
·
Psychiatria 2023;20(1):22-35.
Afiliacje
  1. Zakład Farmakologii Katedry Farmakologii, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny, Katowice, Polska
  2. Zakład Kardiologii Inwazyjnej i Elektrokardiologii III Katedry Kardiologii, Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny, Katowice, Polska
  3. Wydział Nauk Medycznych w Katowicach, Śląski Uniwersytet Medyczny, Katowice, Polska

dostęp płatny

Tom 20, Nr 1 (2023)
Artykuły przeglądowe
Opublikowany online: 2023-02-21

Streszczenie

Oreksyny odgrywają istotną rolę w szerokim spektrum funkcji ośrodkowego układu nerwowego. Zaangażowane są w regulację homeostazy energetycznej, metabolizmu, stanu czuwania i snu, odpowiedzi na stres, patofizjologię zaburzeń nastroju i lęku. Szereg prac z ostatnich lat wskazuje na rolę oreksyn w patofizjologii uzależnień. Postuluje się udział oreksyny A i oreksyny B oraz ich białek receptorowych: OX1R oraz OX2R. Neuromodulacja oreksynergiczna jest istotnym elementem kontroli dopaminergicznego szlaku mezokortykolimbicznego (układ nagrody). Ekspresja i aktywność oreksyn zmienia się pod wpływem dostarczanych substancji psychoaktywnych oraz podniet behawioralnych, a leki antagonistyczne wobec receptorów oreksynowych mogą być potencjalnym celem farmakoterapii uzależnień. W pracy opisano anatomię i fizjologię układu oreksynergicznego, jego powiązania z układem nagrody oraz badania przedkliniczne i kliniczne, dotyczące zmian w modulacji oreksynowej zachodzących u zwierząt i ludzi uzależnionych.

Streszczenie

Oreksyny odgrywają istotną rolę w szerokim spektrum funkcji ośrodkowego układu nerwowego. Zaangażowane są w regulację homeostazy energetycznej, metabolizmu, stanu czuwania i snu, odpowiedzi na stres, patofizjologię zaburzeń nastroju i lęku. Szereg prac z ostatnich lat wskazuje na rolę oreksyn w patofizjologii uzależnień. Postuluje się udział oreksyny A i oreksyny B oraz ich białek receptorowych: OX1R oraz OX2R. Neuromodulacja oreksynergiczna jest istotnym elementem kontroli dopaminergicznego szlaku mezokortykolimbicznego (układ nagrody). Ekspresja i aktywność oreksyn zmienia się pod wpływem dostarczanych substancji psychoaktywnych oraz podniet behawioralnych, a leki antagonistyczne wobec receptorów oreksynowych mogą być potencjalnym celem farmakoterapii uzależnień. W pracy opisano anatomię i fizjologię układu oreksynergicznego, jego powiązania z układem nagrody oraz badania przedkliniczne i kliniczne, dotyczące zmian w modulacji oreksynowej zachodzących u zwierząt i ludzi uzależnionych.

Pobierz cytowanie

Słowa kluczowe

oreksyny, uzależnienie, układ nagrody

Informacje o artykule
Tytuł

Rola oreksyn w patofizjologii uzależnień — podstawy teoretyczne i implikacje kliniczne

Czasopismo

Psychiatria

Numer

Tom 20, Nr 1 (2023)

Typ artykułu

Artykuł przeglądowy

Strony

22-35

Opublikowany online

2023-02-21

Wyświetlenia strony

513

Wyświetlenia/pobrania artykułu

77

DOI

10.5603/PSYCH.a2023.0001

Rekord bibliograficzny

Psychiatria 2023;20(1):22-35.

Słowa kluczowe

oreksyny
uzależnienie
układ nagrody

Autorzy

Miłosz Jan Gołyszny
Joanna Kidoń
Kinga Zorychta
Barbara Grabowska
Laura Smolik
Monika Stanek
Aleksandra Strach
Karolina Kopeć

Referencje (143)
  1. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998; 92(4): 573–585.
  2. de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998; 95(1): 322–327.
  3. Sakurai T, Moriguchi T, Furuya K, et al. Structure and function of human prepro-orexin gene. J Biol Chem. 1999; 274(25): 17771–17776.
  4. Nauta W, Domesick V. Neural associations of the limbic system. The Neural Basis of Behavior. 1982: 175–206.
  5. Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001; 435(1): 6–25.
  6. Trivedi P, Yu H, MacNeil DJ, et al. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998; 438(1-2): 71–75.
  7. Wang C, Wang Q, Ji B, et al. The orexin/receptor system: molecular mechanism and therapeutic potential for neurological diseases. Front Mol Neurosci. 2018; 11: 220.
  8. Soya S, Sakurai T. Orexin as a modulator of fear-related behavior: Hypothalamic control of noradrenaline circuit. Brain Res. 2020; 1731: 146037.
  9. Mahoney SL. Attachment styles, sleep quality, and emotional regulation in severely emotionally disturbed youth: A psychobiological perspective Minneapolis, MN: Capella University, 2009.
  10. Nollet M, Leman S. Role of orexin in the pathophysiology of depression: potential for pharmacological intervention. CNS Drugs. 2013; 27(6): 411–422.
  11. Tsuchimine S, Hattori K, Ota M, et al. Reduced plasma orexin-A levels in patients with bipolar disorder. Neuropsychiatr Dis Treat. 2019; 15: 2221–2230.
  12. Sakamoto F, Yamada S, Ueta Y. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept. 2004; 118(3): 183–191.
  13. Winsky-Sommerer R, Yamanaka A, Diano S, et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci. 2004; 24(50): 11439–11448.
  14. Zhang W, Zhang Na, Sakurai T, et al. Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis. Brain Res. 2009; 1262: 25–37.
  15. Sakurai T. The role of orexin in motivated behaviours. Nat Rev Neurosci. 2014; 15(11): 719–731.
  16. Grafe LA, Bhatnagar S. Orexins and stress. Front Neuroendocrinol. 2018; 51: 132–145.
  17. Sargin D. The role of the orexin system in stress response. Neuropharmacology. 2019; 154: 68–78.
  18. Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology. 2020; 168: 108013.
  19. Han D, Han F, Shi Y, et al. Mechanisms of memory impairment induced by orexin-a via orexin 1 and orexin 2 receptors in post-traumatic stress disorder rats. Neuroscience. 2020; 432: 126–136.
  20. Skotnicka J. Ekspozycja na doświadczenia traumatyczne wśród osób uzależnionych od alkoholu. Psychiatr Pol. 2018; 52(3): 487–497.
  21. Vetulani J. Uzależnienia lekowe: mechanizmy neurobiologiczne i podstawy farmakoterapii. Alkoholizm i Narkomania. 2001; 14(1): 13–58.
  22. Kostowski W. Dopamina a mechanizmy nagrody i rozwój uzależnień: fakty i hipotezy. Alkoholizm i Narkomania. 2000; 13(2): 189–212.
  23. Kostowski W. Uzależnienia: podstawowe pojęcia i teorie. Psychiatria. 2005; 2(2): 61–76.
  24. Kostowski W. Podstawowe mechanizmy i teorie uzależnień. Alkoholizm i Narkomania. 2006; 19(2): 139–168.
  25. Costello EJ, Erkanli A, Federman E, et al. Development of psychiatric comorbidity with substance abuse in adolescents: effects of timing and sex. J Clin Child Psychol. 1999; 28(3): 298–311.
  26. McHugh RK, Weiss RD. Alcohol use disorder and depressive disorders. Alcohol Res. 2019; 40(1).
  27. Parmar A, Kaloiya G. Comorbidity of personality disorder among substance use disorder patients: a narrative review. Indian J Psychol Med. 2018; 40(6): 517–527.
  28. Kidorf M, Solazzo S, Yan H, et al. Psychiatric and substance use comorbidity in treatment-seeking injection opioid users referred from syringe exchange. J Dual Diagn. 2018; 14(4): 193–200.
  29. Weinstein A, Dorani D, Elhadif R, et al. Internet addiction is associated with social anxiety in young adults. Ann Clin Psychiatry. 2015; 27(1): 4–9.
  30. Starcevic V, Aboujaoude E. Internet gaming disorder, obsessive-compulsive disorder, and addiction. Curr Addict Rep. 2017; 4(3): 317–322.
  31. Grassi G, Makris N, Pallanti S. Addicted to compulsion: assessing three core dimensions of addiction across obsessive-compulsive disorder and gambling disorder. CNS Spectr. 2020; 25(3): 392–401.
  32. Narvaez JCM, Jansen K, Pinheiro RT, et al. Psychiatric and substance-use comorbidities associated with lifetime crack cocaine use in young adults in the general population. Compr Psychiatry. 2014; 55(6): 1369–1376.
  33. Ecker AH, Stanley MA, Smith TL, et al. Co-occurrence of obsessive-compulsive disorder and substance use disorders among U.S. Veterans: prevalence and mental health utilization. J Cogn Psychother. 2019; 33(1): 23–32.
  34. Jandrić-Kočič M. Factors affecting development of depression in people who drink alcohol. Timoč Med Glas. 2020; 45(1-2): 6–11.
  35. Fluharty M, Taylor AE, Grabski M, et al. The association of cigarette smoking with depression and anxiety: a systematic review. Nicotine Tob Res. 2017; 19(1): 3–13.
  36. Di Chiara G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol. 1998; 12(1): 54–67.
  37. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993; 18(3): 247–291.
  38. Belujon P, Grace AA. Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann N Y Acad Sci. 2011; 1216: 114–121.
  39. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011; 508(1): 1–12.
  40. Narkiewicz O, Moryś J, Dziewiątkowski J, Kubik W. Anatomia człowieka. Podręcznik dla studentów. Wydawnictwo Lekarskie PZWL, Warszawa 2010.
  41. Taber KH, Black DN, Porrino LJ, et al. Neuroanatomy of dopamine: reward and addiction. J Neuropsychiatry Clin Neurosci. 2012; 24(1): 1–4.
  42. Bubser M, Fadel JR, Jackson LL, et al. Dopaminergic regulation of orexin neurons. Eur J Neurosci. 2005; 21(11): 2993–3001.
  43. de Lecea L, Sutcliffe JG. Dopamine-hypocretin/orexin interactions. Hypocretins. In: Deutch AY, Fadel J, Bubsera M. ed. Hypocretins. Springer, Boston 2005: 339–351.
  44. España RA, Melchior JR, Roberts DCS, et al. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology (Berl). 2011; 214(2): 415–426.
  45. Glavin GB. Stress and brain noradrenaline: a review. Neurosci Biobehav Rev. 1985; 9(2): 233–243.
  46. Hoffman BB. Adrenaline. Harvard University Press, Cambridge 2013.
  47. Bylund DB, Eikenberg DC, Hieble JP, et al. International Union of Pharmacology: nomenclature of adrenoreceptors. Pharmacol Rev. 1994; 46(2): 121–136.
  48. Zhang XY, Kosten TA. Prazosin, an alpha-1 adrenergic antagonist, reduces cocaine-induced reinstatement of drug-seeking. Biol Psychiatry. 2005; 57(10): 1202–1204.
  49. Alsene KM, Fallace K, Bakshi VP. Ventral striatal noradrenergic mechanisms contribute to sensorimotor gating deficits induced by amphetamine. Neuropsychopharmacology. 2010; 35(12): 2346–2356.
  50. Mitrano DA, Schroeder JP, Smith Y, et al. α-1 Adrenergic receptors are localized on presynaptic elements in the nucleus accumbens and regulate mesolimbic dopamine transmission. Neuropsychopharmacology. 2012; 37(9): 2161–2172.
  51. Weinshenker D, Schroeder JP. There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology. 2007; 32(7): 1433–1451.
  52. Tuinstra T, Cools AR. Newly synthesized dopamine in the nucleus accumbens is regulated by beta-adrenergic, but not alpha-adrenergic, receptors. Neuroscience. 2000; 98(4): 743–747.
  53. Stahl SM. Stahl's essential psychopharmacology: neuroscientific basis and practical applications. Cambridge University Press, Cambridge 2021.
  54. Puskás N, Papp RS, Gallatz K, et al. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice. Peptides. 2010; 31(8): 1589–1597.
  55. Date Y, Ueta Y, Yamashita H, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A. 1999; 96(2): 748–753.
  56. Shih CD, Chuang YC. Nitric oxide and GABA mediate bi-directional cardiovascular effects of orexin in the nucleus tractus solitarii of rats. Neuroscience. 2007; 149(3): 625–635.
  57. Rok-Bujko P. Rola układu serotoninergicznego w działaniu nagradzającym i uzależniającym kokainy. Alkoholizm i Narkomania. 2007; 20(2): 179–202.
  58. Leathwood PD. Tryptophan availability and serotonin synthesis. Proc Nutr Soc. 1987; 46(1): 143–156.
  59. Huang KW, Ochandarena NE, Philson AC, et al. Molecular and anatomical organization of the dorsal raphe nucleus. Elife. 2019; 8.
  60. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017; 31(9): 1091–1120.
  61. De Deurwaerdère P, Di Giovanni G. Serotonin in health and disease. Int J Mol Sci. 2020; 21(10): 3500.
  62. Hasegawa E, Maejima T, Yoshida T, et al. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc Natl Acad Sci U S A. 2017; 114(17): E3526–E3535.
  63. Adidharma W, Deats SP, Ikeno T, et al. Orexinergic modulation of serotonin neurons in the dorsal raphe of a diurnal rodent, Arvicanthis niloticus. Horm Behav. 2019; 116: 104584.
  64. Zawilska JB, Biegańska K, Milanowska M, et al. Hipokretyny (oreksyny) – rola w uzależnieniach od substancji psychoaktywnych. Neuropsychiatr i Neuropsychol. 2010; 5(1): 1–9.
  65. Gołyszny M, Paul-Samojedny M, Zieliński M, Ludyga T. Escitalopram affects hypocretins/orexins transmission in hypothalamus of stressed rats. Wydawnictwo Naukowe Tygiel, Wrocław 2020: 111–112.
  66. Kaneko T, Fujiyama F. Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res. 2002; 42(4): 243–250.
  67. Lavin A, Nogueira L, Lapish CC, et al. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci. 2005; 25(20): 5013–5023.
  68. Castellano C, Cestari V, Ciamei A. NMDA receptors and learning and memory processes. Curr Drug Targets. 2001; 2(3): 273–283.
  69. Kumari M, Ticku M. Regulation of NMDA receptors by ethanol. Prog Drug Res. 2000; 54: 151–189.
  70. Costa E, Soto E, Cardoso R, et al. Acute Effects of Ethanol on Kainate Receptors in Cultured Hippocampal Neurons. Alcoholism: Clinical and Experimental Research. 2000; 24(2): 220–225.
  71. Bird MK, Kirchhoff J, Djouma E, et al. Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. Int J Neuropsychopharmacol. 2008; 11(6): 765–774.
  72. Allgaier C. Ethanol sensitivity of NMDA receptors. Neurochem Int. 2002; 41(6): 377–382.
  73. Allgaier C, Scheibler P, Müller D, et al. NMDA receptor characterization and subunit expression in rat cultured mesencephalic neurones. Br J Pharmacol. 1999; 126(1): 121–130.
  74. Maldve RE, Zhang TA, Ferrani-Kile K, et al. DARPP-32 and regulation of the ethanol sensitivity of NMDA receptors in the nucleus accumbens. Nat Neurosci. 2002; 5(7): 641–648.
  75. Stobbs SH, Ohran A, Lassen M, et al. Ethanol suppression of ventral tegmental area GABA neuron electrical transmission involves n-methyl-d-aspartate receptors. J Pharmacol Exp Ther. 2004; 311(1): 282–289.
  76. Dahchour A, De Witte P, Bolo N, et al. Central effects of acamprosate: part 1. Acamprosate blocks the glutamate increase in the nucleus accumbens microdialysate in ethanol withdrawn rats. Psychiatry Res. 1998; 82(2): 107–114.
  77. Littleton J, Zieglgänsberger W. Pharmacological mechanisms of naltrexone and acamprosate in the prevention of relapse in alcohol dependence. Am J Addict. 2003; 12(s1): s3–ss11.
  78. Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol. 2014; 29: 103–108.
  79. Aitta-Aho T, Pappa E, Burdakov D, et al. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice. Neurobiol Learn Mem. 2016; 136: 183–188.
  80. Borgland SL, Storm E, Bonci A. Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci. 2008; 28(8): 1545–1556.
  81. Korotkova TM, Sergeeva OA, Eriksson KS, et al. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci. 2003; 23(1): 7–11.
  82. Abrahamson EE, Moore RY. The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res. 2001; 889(1-2): 1–22.
  83. Schöne C, Apergis-Schoute J, Sakurai T, et al. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 2014; 7(3): 697–704.
  84. Blanco-Centurion C, Bendell E, Zou B, et al. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep. 2018; 4: 44–49.
  85. Liljequist S, Engel J. Effects of GABAergic agonists and antagonists on various ethanol-induced behavioral changes. Psychopharmacology (Berl). 1982; 78(1): 71–75.
  86. Agabio R, Colombo G. GABAB receptor as therapeutic target for drug addiction: from baclofen to positive allosteric modulators. Psychiatr Pol. 2015; 49(2): 215–223.
  87. Xi ZX, Ramamoorthy S, Shen H, et al. GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. J Neurosci. 2003; 23(8): 3498–3505.
  88. Creed MC, Ntamati NR, Tan KR. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci. 2014; 8: 8.
  89. Alam MdN, Kumar S, Bashir T, et al. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol. 2005; 563(Pt 2): 569–582.
  90. Ferrari LL, Park D, Zhu L, et al. Regulation of lateral hypothalamic orexin activity by local GABAergic neurons. J Neurosci. 2018; 38(6): 1588–1599.
  91. Lu XY, Bagnol D, Burke S, et al. Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav. 2000; 37(4): 335–344.
  92. van den Pol AN, Gao XB, Obrietan K, et al. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci. 1998; 18(19): 7962–7971.
  93. Baldo BA, Gual-Bonilla L, Sijapati K, et al. Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci. 2004; 19(2): 376–386.
  94. Borgland SL, Taha SA, Sarti F, et al. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006; 49(4): 589–601.
  95. Estabrooke IV, McCarthy MT, Ko E, et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci. 2001; 21(5): 1656–1662.
  96. McPherson CS, Featherby T, Krstew E, et al. Quantification of phosphorylated cAMP-response element-binding protein expression throughout the brain of amphetamine-sensitized rats: activation of hypothalamic orexin A-containing neurons. J Pharmacol Exp Ther. 2007; 323(3): 805–812.
  97. Murphy JA, Deurveilher S, Semba K. Stimulant doses of caffeine induce c-FOS activation in orexin/hypocretin-containing neurons in rat. Neuroscience. 2003; 121(2): 269–275.
  98. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005; 437(7058): 556–559.
  99. Yeoh JW, James MH, Jobling P, et al. Cocaine potentiates excitatory drive in the perifornical/lateral hypothalamus. J Physiol. 2012; 590(16): 3677–3689.
  100. Rao Y, Mineur YS, Gan G, et al. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J Physiol. 2013; 591(7): 1951–1966.
  101. Plaza-Zabala A, Flores Á, Maldonado R, et al. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol Psychiatry. 2012; 71(3): 214–223.
  102. Pasumarthi RK, Reznikov LR, Fadel J. Activation of orexin neurons by acute nicotine. Eur J Pharmacol. 2006; 535(1-3): 172–176.
  103. Kane JK, Parker SL, Li MD. Hypothalamic orexin-A binding sites are downregulated by chronic nicotine treatment in the rat. Neurosci Lett. 2001; 298(1): 1–4.
  104. Kane JK, Parker SL, Matta SG, et al. Nicotine up-regulates expression of orexin and its receptors in rat brain. Endocrinology. 2000; 141(10): 3623–3629.
  105. Zhang GC, Mao LM, Liu XY, et al. Long-lasting up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administration. J Neurochem. 2007; 103(1): 400–407.
  106. Georgescu D, Zachariou V, Barrot M, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003; 23(8): 3106–3111.
  107. Laorden ML, Ferenczi S, Pintér-Kübler B, et al. Hypothalamic orexin - a neurons are involved in the response of the brain stress system to morphine withdrawal. PLoS One. 2012; 7(5): e36871.
  108. Zhou Y, Bendor J, Hofmann L, et al. Mu opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J Endocrinol. 2006; 191(1): 137–145.
  109. Zarrabian S, Riahi E, Karimi S, et al. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res. 2020; 1731: 146028.
  110. Steiner MA, Lecourt H, Jenck F. The dual orexin receptor antagonist almorexant, alone and in combination with morphine, cocaine and amphetamine, on conditioned place preference and locomotor sensitization in the rat. Int J Neuropsychopharmacol. 2013; 16(2): 417–432.
  111. Berro LF, Moreira-Junior Ed, Rowlett JK. The dual orexin receptor antagonist almorexant blocks the sleep-disrupting and daytime stimulant effects of methamphetamine in rhesus monkeys. Drug Alcohol Depend. 2021; 227: 108930.
  112. Esmaili-Shahzade-Ali-Akbari P, Hosseinzadeh H, Mehri S. Effect of suvorexant on morphine tolerance and dependence in mice: Role of NMDA, AMPA, ERK and CREB proteins. Neurotoxicology. 2021; 84: 64–72.
  113. Farahimanesh S, Zarrabian S, Haghparast A. Role of orexin receptors in the ventral tegmental area on acquisition and expression of morphine-induced conditioned place preference in the rats. Neuropeptides. 2017; 66: 45–51.
  114. Ebrahimian F, Naghavi FS, Yazdi F, et al. Differential roles of orexin receptors within the dentate gyrus in stress- and drug priming-induced reinstatement of conditioned place preference in rats. Behav Neurosci. 2016; 130(1): 91–102.
  115. Anderson RI, Becker HC, Adams BL, et al. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci. 2014; 8: 33.
  116. Moorman DE, Aston-Jones G. Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol--preferring Sprague--Dawley rats. Alcohol. 2009; 43(5): 379–386.
  117. Jupp B, Krivdic B, Krstew E, et al. The orexin₁ receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res. 2011; 1391: 54–59.
  118. Hutcheson DM, Quarta D, Halbout B, et al. Orexin-1 receptor antagonist SB-334867 reduces the acquisition and expression of cocaine-conditioned reinforcement and the expression of amphetamine-conditioned reward. Behav Pharmacol. 2011; 22(2): 173–181.
  119. Erami E, Azhdari-Zarmehri H, Rahmani A, et al. Blockade of orexin receptor 1 attenuates the development of morphine tolerance and physical dependence in rats. Pharmacol Biochem Behav. 2012; 103(2): 212–219.
  120. Blouin AM, Fried I, Wilson CL, et al. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun. 2013; 4: 1547.
  121. Thannickal TC, John J, Shan L, et al. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci Transl Med. 2018; 10(447).
  122. McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). Handb Clin Neurol. 2021; 180: 359–374.
  123. Kudriavova AS, Meskenaite V, Mikhailov VI, et al. Preserved number of orexin neurons in postmortem hypothalamic tissue of chronic alcoholics. Medical academic journal. 2019; 19(1S): 91–92.
  124. Lee WC, Chen PY, Kao CF, et al. Differences in serum orexin-A levels between the acute and subacute withdrawal phases in individuals who use methamphetamine. Exp Clin Psychopharmacol. 2021; 29(6): 573–579.
  125. Choi MiR, Cho H, Chun JW, et al. Increase of orexin A in the peripheral blood of adolescents with Internet gaming disorder. J Behav Addict. 2020; 9(1): 93–104.
  126. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000; 6(9): 991–997.
  127. Mitler MM, Hajdukovic R, Erman MK. Treatment of narcolepsy with methamphetamine. Sleep. 1993; 16(4): 306–317.
  128. Turner M. The treatment of narcolepsy with amphetamine-based stimulant medications: a call for better understanding. J Clin Sleep Med. 2019; 15(5): 803–805.
  129. Galloway GP, Frederick SL, Staggers F, et al. Gamma-hydroxybutyrate: an emerging drug of abuse that causes physical dependence. Addiction. 2006; 92(1): 89–96.
  130. Aston-Jones G, Smith RJ, Sartor GC, et al. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res. 2010; 1314: 74–90.
  131. Baimel C, Bartlett SE, Chiou LC, et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol. 2015; 172(2): 334–348.
  132. Ponz A, Khatami R, Poryazova R, et al. Abnormal activity in reward brain circuits in human narcolepsy with cataplexy. Ann Neurol. 2010; 67(2): 190–200.
  133. Ponz A, Khatami R, Poryazova R, et al. Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann Neurol. 2010; 67(3): 394–398.
  134. Schwartz S, Ponz A, Poryazova R, et al. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain. 2008; 131(Pt 2): 514–522.
  135. Valentino RJ, Volkow ND. Drugs, sleep, and the addicted brain. Neuropsychopharmacology. 2020; 45(1): 3–5.
  136. Morairty SR, Revel FG, Malherbe P, et al. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One. 2012; 7(7): e39131.
  137. McElhinny CJ, Lewin AH, Mascarella SW, et al. Hydrolytic instability of the important orexin 1 receptor antagonist SB-334867: possible confounding effects on in vivo and in vitro studies. Bioorg Med Chem Lett. 2012; 22(21): 6661–6664.
  138. Lebold TP, Bonaventure P, Shireman BT. Selective orexin receptor antagonists. Bioorg Med Chem Lett. 2013; 23(17): 4761–4769.
  139. Suchting R, Yoon JH, Miguel GG, et al. Preliminary examination of the orexin system on relapse-related factors in cocaine use disorder. Brain Res. 2020; 1731: 146359.
  140. Hoever P, de Haas S, Winkler J, et al. Orexin receptor antagonism, a new sleep-promoting paradigm: an ascending single-dose study with almorexant. Clin Pharmacol Ther. 2010; 87(5): 593–600.
  141. Patel KV, Aspesi AV, Evoy KE. Suvorexant: a dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia. Ann Pharmacother. 2015; 49(4): 477–483.
  142. Kishi T, Nomura I, Matsuda Y, et al. Lemborexant vs suvorexant for insomnia: A systematic review and network meta-analysis. J Psychiatr Res. 2020; 128: 68–74.
  143. España RA, Oleson EB, Locke JL, et al. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci. 2010; 31(2): 336–348.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest VM Media Group sp z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl