open access

Ahead of print
Review paper
Published online: 2021-06-29
Get Citation

The review of selected methods of modern therapies in schizophrenia

Karolina Michałowska1, Emil Bartosz Rozenek1, Alicja Cichocka1, Bogumiła Szewczak1, Bartosz Król2, Napoleon Waszkiewicz3
DOI: 10.5603/PSYCH.a2021.0027
Affiliations
  1. Samodzielny Publiczny Zespół Zakładów Opieki Zdrowotnej w Wyszkowie, ul. Komisji Edukacji Narodowej 1, 07-200 Wyszków, Poland
  2. Szpital Wojewódzki im. Kardynała Stefana Wyszyńskiego w Łomży
  3. Klinika Psychiatrii, Uniwersytet Medyczny w Białymstoku, Pl. Brodowicza 1, 16-070 Choroszcz, Poland

open access

Ahead of print
Prace poglądowe - nadesłane
Published online: 2021-06-29

Abstract

Schizophrenia is a mental disorder with a complex etiopathogenesis explained by several still developing theories. Knowledge of these theories can matter when choosing the right treatment, because it increases the chance of therapeutic success. Various strategies are currently being developed so that we can, to some extent, adapt therapy to the individual needs of patients and, thus, optimize the therapeutic effect and minimize side effects. The issue of personalization of therapy translates into better cooperation between the doctor and the patient. The involvement of both parts in the treatment process, as in the treatment of other mental disorders, is crucial for its effectiveness. The therapeutic methods that we have at our disposal are still not producing satisfactory results in reducing the negative symptoms or cognitive disorders that occur in schizophrenia. Currently, not only the development of psychiatry but also development of certain branches of science related to medicine, such as pharmacogenetics and molecular biology, can contribute to achieving satisfactory research results. It therefore seems reasonable to seek new treatment strategies. A brief presentation of the most promising therapeutic methods is the aim of this literature review. It covers pharmacological treatment (cariprazine, lurasidone, lumateperone, paliperidone), transcranial magnetic stimulation (TMS), psychotherapy and cognitive enhancement therapy (CET). The issue of pharmacogenetics of schizophrenia was also raised.

Abstract

Schizophrenia is a mental disorder with a complex etiopathogenesis explained by several still developing theories. Knowledge of these theories can matter when choosing the right treatment, because it increases the chance of therapeutic success. Various strategies are currently being developed so that we can, to some extent, adapt therapy to the individual needs of patients and, thus, optimize the therapeutic effect and minimize side effects. The issue of personalization of therapy translates into better cooperation between the doctor and the patient. The involvement of both parts in the treatment process, as in the treatment of other mental disorders, is crucial for its effectiveness. The therapeutic methods that we have at our disposal are still not producing satisfactory results in reducing the negative symptoms or cognitive disorders that occur in schizophrenia. Currently, not only the development of psychiatry but also development of certain branches of science related to medicine, such as pharmacogenetics and molecular biology, can contribute to achieving satisfactory research results. It therefore seems reasonable to seek new treatment strategies. A brief presentation of the most promising therapeutic methods is the aim of this literature review. It covers pharmacological treatment (cariprazine, lurasidone, lumateperone, paliperidone), transcranial magnetic stimulation (TMS), psychotherapy and cognitive enhancement therapy (CET). The issue of pharmacogenetics of schizophrenia was also raised.

Get Citation

Keywords

transcranial magnetic stimulation; pharmacogenetics; schizophrenia; antipsychotic agents; cariprazine; paliperidone palmitate; lurasidone hydrochloride

About this article
Title

The review of selected methods of modern therapies in schizophrenia

Journal

Psychiatria (Psychiatry)

Issue

Ahead of print

Article type

Review paper

Published online

2021-06-29

DOI

10.5603/PSYCH.a2021.0027

Keywords

transcranial magnetic stimulation
pharmacogenetics
schizophrenia
antipsychotic agents
cariprazine
paliperidone palmitate
lurasidone hydrochloride

Authors

Karolina Michałowska
Emil Bartosz Rozenek
Alicja Cichocka
Bogumiła Szewczak
Bartosz Król
Napoleon Waszkiewicz

References (171)
  1. Gałecki P, Szulc A. Psychiatria. In: Lis-Olszewska D, Szulc A. ed. Schizofrenia, zaburzenia typu schizofrenii i urojeniowe (F20-F29). Edra Urban & Partner, Wrocław 2018: 160.
  2. Mucci A, Merlotti E, Üçok A, et al. Pierwotne i trwałe objawy negatywne: koncepcje, oceny i podstawy neurobiologiczne. Schizophrenia Research. 2017; 186: 19–28.
  3. Mueser K, McGurk S. Schizophrenia. The Lancet. 2004; 363(9426): 2063–2072.
  4. Ivezić SŠ, Sesar MA, Mužinić L. Effects of a Group Psychoeducation Program on Self-Stigma, Empowerment and Perceived Discrimination of Persons with Schizophrenia. Psychiatr Danub. 2017; 29(1): 66–73.
  5. Podogrodzka-Niell M, Tyszkowska M. Stigmatization on the way to recovery in mental illness - the factors associated with social functioning. Psychiatria Polska. 2014; 48: 1201–1211.
  6. Corrigan PW, Rao D. O autostygmacie choroby psychicznej: etapy, ujawnianie i strategie zmiany. Can J Psych. 2012; 57(8): 464–469.
  7. Girdler SJ, Confino JE, Woesner ME. Ćwiczenia jako leczenie schizofrenii: przegląd. Psychopharmacol Bull. 2019; 49(1): 56–69.
  8. Sher L, Kahn RS. Samobójstwo w schizofrenii: przegląd edukacyjny. Medicina (Kaunas). 2019; 55(7): 361.
  9. Niedźwiedzka I. Co to jest schizofrenia? Psychiatria po Dyplomie. 2018; 15(5).
  10. Shah, UH i González-Maeso, J, Interakcje serotoniny i glutaminianu w przedklinicznych modelach schizofrenii. ACS Chemical Neuroscience; 2020.
  11. Gałecki P, Szulc A. Psychiatria, Lis-Olszewska D (red. ), Schizofrenia, zaburzenia typu schizofrenii i urojeniowe (F20-F29), Edra Urban & Partner, Wrocław 2018; 168-170. : 524.
  12. McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019; 42(3): 205–220.
  13. Gałecki P, Szulc A. Psychiatria, Lis-Olszewska D (red. In: Lis-Olszewska D, Szulc A. ed. Schizofrenia, zaburzenia typu schizofrenii i urojeniowe (F20-F29). Edra Urban & Partner, Wrocław 2018: 168–169.
  14. Jaaro-Peled H, Sawa A. Neurodevelopmental Factors in Schizophrenia. Psychiatr Clin North Am. 2020; 43(2): 263–274.
  15. Khandaker G, Cousins L, Deakin J, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. The Lancet Psychiatry. 2015; 2(3): 258–270.
  16. Winship IR, Dursun SM, Baker GB, et al. Przegląd modeli zwierzęcych związanych ze schizofrenią. Czy J Psychiatry. 2019; 64(1): 5–17.
  17. Tohmi M, Tsuda N, Zheng Y, et al. The cellular and behavioral consequences of interleukin-1 alpha penetration through the blood-brain barrier of neonatal rats: a critical period for efficacy. Neuroscience. 2007; 150(1): 234–250.
  18. Watanabe Y, Someya T, Nawa H. Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Psychiatry Clin Neurosci. 2010; 64(3): 217–230.
  19. Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull. 2009; 35(6): 1163–1182.
  20. Müller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophrenia Bulletin. 2018; 44(5): 973–982.
  21. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Molecular Psychiatry. 2016; 21(12): 1696–1709.
  22. Felger J, Mun J, Kimmel H, et al. Chronic Interferon-α Decreases Dopamine 2 Receptor Binding and Striatal Dopamine Release in Association with Anhedonia-Like Behavior in Nonhuman Primates. Neuropsychopharmacology. 2013; 38(11): 2179–2187.
  23. Müller N, Riedel M, Scheppach C, et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry. 2002; 159(6): 1029–1034.
  24. Akhondzadeh S, Tabatabaee M, Amini H, et al. Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res. 2007; 90(1-3): 179–185.
  25. Müller N, Krause D, Dehning S, et al. Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res. 2010; 121(1-3): 118–124.
  26. Laan W, Grobbee DE, Selten JP, et al. Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2010; 71(5): 520–527.
  27. Girgis RR, Ciarleglio A, Choo T, et al. Randomizowane, podwójnie ślepe, kontrolowane placebo badanie kliniczne tocilizumabu, przeciwciała receptora interleukiny-6, dla pozostałych objawów w schizofrenii. Neuropsychopharmacology. 2018; 43: 1317–1323.
  28. Buchanan RW, Weiner E, Kelly DL, et al. Skojarzona terapia przeciwzapalna w leczeniu schizofrenii. J Clin Psychopharmacol. 2020; 40: 444–450.
  29. Grzywacz A, Samochowiec J. Genetyka psychiatryczna ― zastosowania kliniczne: teraźniejszość i przyszłość. Psychiatria po Dyplomie. 2011; 8(3).
  30. Foley C, Corvin A, Nakagome S. Genetics of Schizophrenia: Ready to Translate? Curr Psychiatry Rep. 2017; 19(9): 61.
  31. Olejniczak B, Samochowiec J. Możliwości wykorzystania genetyki w psychiatrii. Psychiatria po Dyplomie. 2020; 17(5).
  32. Gispen-de Wied CC. Stress in schizophrenia: an integrative view. Eur J Pharmacol. 2000; 405(1-3): 375–384.
  33. Stilo SA, Murray RM. Non-Genetic Factors in Schizophrenia. Curr Psychiatry Rep. 2019; 21(10): 100.
  34. Gałecki P, Szulc A. Psychiatria. In: Lis-Olszewska D, Szulc A. ed. Schizofrenia, zaburzenia typu schizofrenii i urojeniowe (F20-F29). Edra Urban & Partner, Wrocław : 163.
  35. Wójciak P, Remlinger-Molenda A, Rybakowski J. Stages of the clinical course of schizophrenia (staging concept). Psychiatria Polska. 2016; 50(4): 717–730.
  36. Cantor-Graae E, Selten JP. Schizophrenia and migration: a meta-analysis and review. Am J Psychiatry. 2005; 162(1): 12–24.
  37. Łoza B, Murawiec S. Leki przeciwpsychotyczne w postaci długodziałających iniekcji w leczeniu schizofrenii — nowe standardy terapii. Psychiatria. 2015; 12(3): 119–127.
  38. Montes JM, Montes P, Hernández-Huerta D. Cariprazine in Three Acute Patients with Schizophrenia: A Real-World Experience. Neuropsychiatr Dis Treat. 2021; 17: 291–296.
  39. Seeman MV. The Gut Microbiome and Treatment-Resistance in Schizophrenia. Psychiatr Q. 2020; 91(1): 127–136.
  40. Meder J, Tyszkowska M, Jarema M, et al. Leki przeciwpsychotyczne w praktyce lekarza psychiatry.Leczenie pacjentów z rozpoznaniem schizofrenii lekoopornej. Psychiatria Polska. 2008; XLII(6): 859–873.
  41. Kucharska-Mazur J, Samochowiec J. Czy potrzebujemy nowych leków do leczenia schizofrenii? Psychiatria po Dyplomie. 2019; 16(3).
  42. Misiak B, Bieńkowski P, Samochowiec J. Cariprazine ― a novel antipsychotic drug and its place in the treatment of schizophrenia. Psychiatr Pol. 2018; 52(6): 971–981.
  43. Wójciak P. Objawy negatywne w schizofrenii. Psychiatria po Dyplomie. 2020; 17: nr.
  44. Németh G, Laszlovszky I, Czobor P, et al. Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomised, double-blind, controlled trial. The Lancet. 2017; 389(10074): 1103–1113.
  45. Gałecki P, Szulc A. Psychiatria, Lis-Olszewska D (red. ), Schizofrenia, zaburzenia typu schizofrenii i urojeniowe (F20-F29), Edra Urban & Partner, Wrocław. ; 2018: 174.
  46. Citrome L. Cariprazine for the Treatment of Schizophrenia: A Review of this Dopamine D3-Preferring D3/D2 Receptor Partial Agonist. Clin Schizophr Relat Psychoses. 2016; 10(2): 109–119.
  47. Gray R, Brewin E, Noak J, et al. A review of the literature on HIV infection and schizophrenia: implications for research, policy and clinical practice. J Psychiatr Ment Health Nurs. 2002; 9(4): 405–409.
  48. Bagchi A, Sambamoorthi U, McSpiritt E, et al. Use of antipsychotic medications among HIV-infected individuals with schizophrenia. Schizophr Res. 2004; 71(2-3): 435–444.
  49. Hernández-Huerta D, Morillo-González J. Dopamine D partial agonists in the treatment of psychosis and substance use disorder comorbidity: a pharmacological alternative to consider? CNS Spectr. 2020 [Epub ahead of print]: 1–2.
  50. Earley W, Durgam S, Lu K, et al. Safety and tolerability of cariprazine in patients with acute exacerbation of schizophrenia: a pooled analysis of four phase II/III randomized, double-blind, placebo-controlled studies. Int Clin Psychopharmacol. 2017; 32(6): 319–328.
  51. Lee HJ, Choi BH, Choi JS, et al. Effects of cariprazine on hERG 1A and hERG 1A/3.1 potassium channels. Eur J Pharmacol. 2019; 854: 92–100.
  52. Jarema M, Bieńkowski P, Heitzman J, et al. Paliperidone palmitate: effectiveness, safety, and the use for treatment of schizophrenia. Psychiatria Polska. 2017; 51(1): 7–21.
  53. Fowler JA, Bettinger TL, Argo TR. Paliperidone extended-release tablets for the acute and maintenance treatment of schizophrenia. Clin Ther. 2008; 30(2): 231–248.
  54. Hope JD, Keks NA. Paliperidone palmitate three-month depot formulation: a helpful innovation with practical pitfalls. Australas Psychiatry. 2018; 26(2): 206–209.
  55. O'Donnell A, Rao S, Turkoz I, et al. Defining "Adequately Treated": A Post Hoc Analysis Examining Characteristics of Patients with Schizophrenia Successfully Transitioned from Once-Monthly Paliperidone Palmitate to Once-Every-3-Months Paliperidone Palmitate. Neuropsychiatr Dis Treat. 2021; 17: 1–9.
  56. Hough D, Gopal S, Vijapurkar U, et al. Paliperidone palmitate maintenance treatment in delaying the time-to-relapse in patients with schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res. 2010; 116(2-3): 107–117.
  57. Xeplion, Paliperydon. http://chpl.com.pl/#detail=11640223!64183194.
  58. Zeidler J, Mahlich J, Greiner W, et al. Cost effectiveness of paliperidone palmitate for the treatment of schizophrenia in Germany. Appl Health Econ Health Policy. 2013; 11(5): 509–521.
  59. Einarson TR, Zilbershtein R, Skoupá J, et al. Economic and clinical comparison of atypical depot antipsychotic drugs for treatment of chronic schizophrenia in the Czech Republic. J Med Econ. 2013; 16(9): 1089–1095.
  60. Morris MT, Tarpada SP. Long-Acting Injectable Paliperidone Palmitate: A Review of Efficacy and Safety. Psychopharmacol Bull. 2017; 47(2): 42–52.
  61. Patel R, Chesney E, Taylor M, et al. Is paliperidone palmitate more effective than other long-acting injectable antipsychotics? Psychol Med. 2018; 48(10): 1616–1623.
  62. Li H, Rui Q, Ning X, et al. A comparative study of paliperidone palmitate and risperidone long-acting injectable therapy in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(4): 1002–1008.
  63. Pandina G, Lane R, Gopal S, et al. A double-blind study of paliperidone palmitate and risperidone long-acting injectable in adults with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(1): 218–226.
  64. Fleischhacker WW, Gopal S, Lane R, et al. A randomized trial of paliperidone palmitate and risperidone long-acting injectable in schizophrenia. Int J Neuropsychopharmacol. 2012; 15(1): 107–118.
  65. McEvoy JP, Byerly M, Hamer RM, et al. Effectiveness of paliperidone palmitate vs haloperidol decanoate for maintenance treatment of schizophrenia: a randomized clinical trial. JAMA. 2014; 311(19): 1978–1987.
  66. Mierzejewski P. Unikatowy wpływ arypiprazolu na funkcje poznawcze – miejsce w leczeniu młodzieży i pacjentów w wieku podeszłym, Psychiatry 2017; 14. Psychiatry. 2017; 14(2): 78–84.
  67. Mailman RB, Murthy V. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des. 2010; 16(5): 488–501.
  68. Sanford M. Lurazydon. CNS Drugs. 2012; 27(1): 67–80.
  69. Loebel A, Cucchiaro J, Sarma K, et al. Efficacy and safety of lurasidone 80 mg/day and 160 mg/day in the treatment of schizophrenia: a randomized, double-blind, placebo- and active-controlled trial. Schizophr Res. 2013; 145(1-3): 101–109.
  70. Srisurapanont M, Suttajit S, Likhitsathian S, et al. A network meta-analysis of the dose-response effects of lurasidone on acute schizophrenia. Sci Rep. 2021; 11(1): 5571.
  71. Horiguchi M, Hannaway KE, Adele-Kun AE. Subchronic treatment with lurasidone has both preventive and enduring reversal effects on the phencyclidine (PCP)-induced deficit in novel object recognition (NOR) in rats. Neuropsychopharmacol. 2011; 36(436).
  72. Kumar B, Kuhad A, Kuhad A. Lumateperone: a new treatment approach for neuropsychiatric disorders. Drugs Today (Barc). 2018; 54(12): 713–719.
  73. Filip M, Gałecki P. Lurazydon – przeciwpsychotyczny lek z uniwersalnym profilem działania farmakologicznego. Psychiatria po Dyplomie. 2021; 18(1).
  74. Pompili M, Verzura C, Trovini G, et al. Lurasidone: efficacy and safety in the treatment of psychotic and mood disorders. Expert Opin Drug Saf. 2018; 17(2): 197–205.
  75. Horiguchi M, Hannaway KE, Adele-Kun AE. Subchronic treatment with lurasidone has both preventive and enduring reversal effects on the phencyclidine (PCP)-induced deficit in novel object recognition (NOR) in rats. Neuropsychopharmacol. 2011; 36: 436.
  76. Meyer J, Mao Y, Pikalov A, et al. Weight change during long-term treatment with lurasidone. International Clinical Psychopharmacology. 2015; 30(6): 342–350.
  77. Higuchi T, Ishigooka J, Iyo M, et al. Lurasidone in the treatment of schizophrenia: Results of a double-blind, placebo-controlled trial in Asian patients. Asia Pac Psychiatry. 2019; 11(2): e12352.
  78. Bieńkowski P, Dudek D, Samochowiec J. Towards better non-selectivity: the role of 5-HT7 receptors in therapeutic efficacy of a second-generation antipsychotic, lurasidone. Psychiatria Polska. 2015; 49: 243–253.
  79. ChPL, Latuda, Lurazydon. http://leki.urpl.gov.pl/files/53_Latuda.pdf.
  80. Meltzer HY, Li Z, Kaneda Y, et al. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27(7): 1159–1172.
  81. Ishibashi T, Horisawa T, Tokuda K, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther. 2010; 334(1): 171–181.
  82. Corponi F, Fabbri C, Bitter I, et al. Novel antipsychotics specificity profile: A clinically oriented review of lurasidone, brexpiprazole, cariprazine and lumateperone. Eur Neuropsychopharmacol. 2019; 29(9): 971–985.
  83. Ng-Mak D, Tongbram V, Ndirangu K, et al. Efficacy and metabolic effects of lurasidone versus brexpiprazole in schizophrenia: a network meta-analysis. J Comp Eff Res. 2018; 7(8): 737–748.
  84. Das S, Barnwal P, Winston A B, et al. Brexpiprazole: so far so good. Ther Adv Psychopharmacol. 2016; 6(1): 39–54.
  85. Antoun Reyad A, Girgis E, Mishriky R. Efficacy and safety of brexpiprazole in acute management of psychiatric disorders: a meta-analysis of randomized controlled trials. Int Clin Psychopharmacol. 2020; 35(3): 119–128.
  86. Thase ME, Zhang P, Weiss C, et al. Efficacy and safety of brexpiprazole as adjunctive treatment in major depressive disorder: overview of four short-term studies. Expert Opin Pharmacother. 2019; 20(15): 1907–1916.
  87. Kishi T, Ikuta T, Matsuda Y, et al. Aripiprazole vs. brexpiprazole for acute schizophrenia: a systematic review and network meta-analysis. Psychopharmacology. 2020; 237(5): 1459–1470.
  88. Cooper D, Gupta V. Lumateperone, StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK560844/.
  89. National Center for Biotechnology Information. PubChem Compound Summary for CID 21302490, Lumateperone. https://pubchem.ncbi.nlm.nih.gov/compound/Lumateperone (22.04.2021).
  90. Limandri BJ. Lumateperone: New Drug or Same Old Drug With a New Dress? J Psychosoc Nurs Ment Health Serv. 2020; 58(6): 9–12.
  91. Blair HA. Lumateperone: First Approval. Drugs. 2020; 80(4): 417–423.
  92. Greenwood J, Acharya RB, Marcellus V, et al. Lumateperone: A Novel Antipsychotic for Schizophrenia. Ann Pharmacother. 2021; 55(1): 98–104.
  93. Correll CU, Davis RE, Weingart M, et al. Efficacy and Safety of Lumateperone for Treatment of Schizophrenia: A Randomized Clinical Trial. JAMA Psychiatry. 2020; 77(4): 349–358.
  94. Vanover KE, Davis RE, Zhou Y, et al. Dopamine D receptor occupancy of lumateperone (ITI-007): a Positron Emission Tomography Study in patients with schizophrenia. Neuropsychopharmacology. 2019; 44(3): 598–605.
  95. Vyas P, Hwang BJ, Brašić JR. An evaluation of lumateperone tosylate for the treatment of schizophrenia. Expert Opin Pharmacother. 2020; 21(2): 139–145.
  96. Eaves S, Rey JA. Brexpiprazole (Rexulti): A New Monotherapy for Schizophrenia and Adjunctive Therapy for Major Depressive Disorder. P T. 2016; 41(7): 418–422.
  97. Ivkovic J, Lindsten A, George V, et al. Effect of Brexpiprazole on Prolactin: An Analysis of Short- and Long-Term Studies in Schizophrenia. J Clin Psychopharmacol. 2019; 39(1): 13–19.
  98. Wesołowska A, Jastrzębska-Więsek M, Cios A, et al. The preclinical discovery and development of paliperidone for the treatment of schizophrenia. Expert Opin Drug Discov. 2020; 15(3): 279–292.
  99. Pouget JG, Müller DJ. Pharmacogenetics of antipsychotic treatment in schizophrenia. Methods Mol Biol. 2014; 1175: 557–587.
  100. Mihaljević-Peles A, Sagud M, Bozina N, et al. Pharmacogenetics and antipsychotics in the light of personalized pharmacotherapy. Psychiatr Danub. 2010; 22(2): 335–337.
  101. Wall CA, Oldenkamp C, Swintak C. Bezpieczeństwo i skuteczność badań farmakogenetycznych w psychofarmakologii dziecięcej, Psychiatria po Dyplomie. 2010; 7(4).
  102. Moons T, de Roo M, Claes S, et al. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics. 2011; 12(8): 1193–1211.
  103. Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999; 36(2-3): 179–194.
  104. Bartels AL, Willemsen ATM, Kortekaas R, et al. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA. J Neural Transm (Vienna). 2008; 115(7): 1001–1009.
  105. Hoosain FG, Choonara YE, Tomar LK, et al. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy. Biomed Res Int. 2015; 2015: 484963.
  106. van der Meel R, Fens MH, Vader P, et al. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release. 2014; 195: 72–85.
  107. Guan F, Zhang T, Han W, et al. Relationship of SNAP25 variants with schizophrenia and antipsychotic-induced weight change in large-scale schizophrenia patients. Schizophr Res. 2020; 215: 250–255.
  108. Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry. 2007; 12(8): 707–747.
  109. Nucifora FC, Woznica E, Lee BJ, et al. Treatment resistant schizophrenia: Clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2019; 131: 104257.
  110. Rossi S, Hallett M, Rossini PM, et al. Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009; 120(12): 2008–2039.
  111. Antczak J, Rakowicz M. Przezczaszkowa stymulacja magnetyczna w praktyce klinicznej. Neurologia po Dyplomie. 2013; 8(6): 28–37.
  112. Cole JC, Green Bernacki C, Helmer A, et al. Efficacy of Transcranial Magnetic Stimulation (TMS) in the Treatment of Schizophrenia: A Review of the Literature to Date. Innov Clin Neurosci. 2015; 12(7-8): 12–19.
  113. Dougall N, Maayan N, Soares-Weiser K, et al. Transcranial magnetic stimulation (TMS) for schizophrenia. Cochrane Database Syst Rev. 2015(8): CD006081.
  114. Mehta UM, Naik SS, Thanki MV, et al. Investigational and Therapeutic Applications of Transcranial Magnetic Stimulation in Schizophrenia. Curr Psychiatry Rep. 2019; 21(9): 89.
  115. Wieczorek T, Kobyłko A, Stramecki F, et al. Przezczaszkowa stymulacja magnetyczna (TMS) w terapii zaburzeń psychicznych – aktualny przegląd badań. Psychiatr Pol. 2020; 167: 1–19.
  116. Eldaief MC, Press DZ, Pascual-Leone A. Transcranial magnetic stimulation in neurology: A review of established and prospective applications. Neurol Clin Pract. 2013; 3(6): 519–526.
  117. Firth J, Cotter J, Carney R, et al. The pro-cognitive mechanisms of physical exercise in people with schizophrenia. Br J Pharmacol. 2017; 174(19): 3161–3172.
  118. Zorzo C, Banqueri M, Higarza SG, et al. Current State of Transcranial Magnetic Stimulation and its use in Psychiatry. Actas Esp Psiquiatr. 2019; 47(3): 110–120.
  119. Thomas F, Bouaziz N, Gallea C, et al. Structural and functional brain biomarkers of clinical response to rTMS of medication-resistant auditory hallucinations in schizophrenia patients: study protocol for a randomized sham-controlled double-blind clinical trial. Trials. 2019; 20(1): 229.
  120. Dlabac-de Lange JJ, Bais L, van Es FD, et al. Efficacy of bilateral repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: results of a multicenter double-blind randomized controlled trial. Psychol Med. 2015; 45(6): 1263–1275.
  121. Quan WX, Zhu XL, Qiao H, et al. The effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on negative symptoms of schizophrenia and the follow-up study. Neurosci Lett. 2015; 584: 197–201.
  122. Lefaucheur JP, André-Obadia N, Antal A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014; 125(11): 2150–2206.
  123. Wang J, Deng XP, Wu YY, et al. High-Frequency rTMS of the Motor Cortex Modulates Cerebellar and Widespread Activity as Revealed by SVM. Front Neurosci. 2020; 14: 186.
  124. Nathou C, Duprey E, Simon G, et al. Effects of low- and high-frequency repetitive transcranial magnetic stimulation on long-latency auditory evoked potentials. Neurosci Lett. 2018; 686: 198–204.
  125. Hoogendam JM, Ramakers GMJ, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010; 3(2): 95–118.
  126. Perera T, George MS, Grammer G, et al. The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder. Brain Stimul. 2016; 9(3): 336–346.
  127. Marzouk T, Winkelbeiner S, Azizi H, et al. Transcranial Magnetic Stimulation for Positive Symptoms in Schizophrenia: A Systematic Review. Neuropsychobiology. 2020; 79(6): 384–396.
  128. Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav. 2014; 66(4): 602–618.
  129. Pfueller U, Roesch-Ely D, Mundt C, et al. Leczenie zaburzeń funkcji poznawczych w schizofrenii Część I: Diagnostyka psychologiczna i trening poznawczy. Psychiatria po Dyplomie. 2011; 8(1).
  130. Wilczyńska K, Orlof W, Rozenek E, et al. Współczesny chory na schizofrenię, współczesne możliwości terapii. Psychiatria po Dyplomie. 2019; 16: nr.
  131. Krug A, Stein F, Kircher T. Kognitive Störungen bei Schizophrenie. Der Nervenarzt. 2019; 91(1): 2–9.
  132. Vicario-Abejón C, Owens D, McKay R, et al. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci. 2002; 3(12): 965–974.
  133. Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry. 2013; 4: 45.
  134. Jindal RD, Pillai AK, Mahadik SP, et al. Decreased BDNF in patients with antipsychotic naïve first episode schizophrenia. Schizophr Res. 2010; 119(1-3): 47–51.
  135. McGregor C, Riordan A, Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front Neuroendocrinol. 2017; 47: 19–33.
  136. Libman-Sokołowska M, Drozdowicz E, Nasierowski T, et al. BDNF jako biomarker w przebiegu i leczeniu schizofrenii. Psychiatr Pol. 2015; 49(6): 1149–1158.
  137. Nuechterlein KH, Ventura J, McEwen SC, et al. Enhancing Cognitive Training Through Aerobic Exercise After a First Schizophrenia Episode: Theoretical Conception and Pilot Study. Schizophr Bull. 2016; 42 Suppl 1: S44–S52.
  138. Kim Hj, Song Bk, So B, et al. Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia: a pilot study. Psychiatry Res. 2014; 220(3): 792–796.
  139. Kuo FC, Lee CH, Hsieh CH, et al. Lifestyle modification and behavior therapy effectively reduce body weight and increase serum level of brain-derived neurotrophic factor in obese non-diabetic patients with schizophrenia. Psychiatry Res. 2013; 209(2): 150–154.
  140. Deste G, Barlati S, Galluzzo A, et al. Effectiveness of Cognitive Remediation in Early Versus Chronic Schizophrenia: A Preliminary Report. Front Psychiatry. 2019; 10: 236.
  141. Bon L, Franck N. The impact of cognitive remediation on cerebral activity in schizophrenia: Systematic review of the literature. Brain Behav. 2018; 8(3): e00908.
  142. Butler AC, Chapman JE, Forman EM, et al. The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin Psychol Rev. 2006; 26(1): 17–31.
  143. Pankowski D, Kowalski J, Gawęda Ł. The effectiveness of metacognitive training for patients with schizophrenia: a narrative systematic review of studies published between 2009 and 2015. Psychiatria Polska. 2016; 50(4): 787–803.
  144. Telichowska-Leśna A. Zastosowanie i skuteczność terapii poznawczo-behawioralnej w leczeniu schizofrenii. Psychiatria. 2007; 4(2): 60–68.
  145. Fei X, Wang S, Zheng X, et al. Global research on cognitive behavioural therapy for schizophrenia from 2000 to 2019: a bibliometric analysis via CiteSpace. Gen Psychiatr. 2021; 34(1): e100327.
  146. Batinic B. Cognitive models of positive and negative symptoms of schizophrenia and implications for treatment. Psychiatria Danubina. 2019; 31(Suppl. 2): S181–S184.
  147. Barbieri A, Visco-Comandini F. Efficacia delle terapie cognitive della terza onda nel trattamento delle psicosi: una meta-rassegna [Efficacy of third wave cognitive therapies in the treatment of psychosis: a meta-review]. Riv Psichiatr. 2020; 55(2): 61–70.
  148. Vujanovic AA, Meyer TD, Heads AM, et al. Cognitive-behavioral therapies for depression and substance use disorders: An overview of traditional, third-wave, and transdiagnostic approaches. Am J Drug Alcohol Abuse. 2017; 43(4): 402–415.
  149. Kahl KG, Winter L, Schweiger U. The third wave of cognitive behavioural therapies: what is new and what is effective? Curr Opin Psychiatry. 2012; 25(6): 522–528.
  150. Külz A, Barton B, Voderholzer U. [Third Wave Therapies of Cognitive Behavioral Therapy for Obsessive Compulsive Disorder: A Reasonable Add-on Therapy for CBT? State of the Art]. Psychother Psychosom Med Psychol. 2016; 66(3-4): 106–111.
  151. Mehl S, Werner D, Lincoln T. Does Cognitive Behavior Therapy for psychosis (CBTp) show a sustainable effect on delusions? A meta-analysis. Frontiers in Psychology. 2015; 6.
  152. Laws KR, Darlington N, Kondel TK, et al. Cognitive Behavioural Therapy for schizophrenia - outcomes for functioning, distress and quality of life: a meta-analysis. BMC Psychol. 2018; 6(1): 32.
  153. Sitko K, Bewick B, Owens D, et al. Meta-analysis and Meta-regression of Cognitive Behavioral Therapy for Psychosis (CBTp) Across Time: The Effectiveness of CBTp has Improved for Delusions. Schizophrenia Bulletin Open. 2020; 1(1).
  154. Balzan RP, Mattiske JK, Delfabbro P, et al. Zindywidualizowany trening metapoznawczy (MCT +) redukuje urojenia objawy psychozy: randomizowane badanie kliniczne. Schizophr Bull. 2019; 45(1): 27–36.
  155. Liu YC, Tang CC, Hung TT, et al. The Efficacy of Metacognitive Training for Delusions in Patients With Schizophrenia: A Meta-Analysis of Randomized Controlled Trials Informs Evidence-Based Practice. Worldviews Evid Based Nurs. 2018; 15(2): 130–139.
  156. Eichner C, Berna F. Acceptance and Efficacy of Metacognitive Training (MCT) on Positive Symptoms and Delusions in Patients With Schizophrenia: A Meta-analysis Taking Into Account Important Moderators. Schizophr Bull. 2016; 42(4): 952–962.
  157. Hassanpour F, Zarghami M, Mouodi S, et al. Adjunctive Memantine Treatment of Schizophrenia: A Double-Blind, Randomized Placebo-Controlled Study. J Clin Psychopharmacol. 2019; 39(6): 634–638.
  158. Mazinani R, Nejati S, Khodaei M. Effects of memantine added to risperidone on the symptoms of schizophrenia: A randomized double-blind, placebo-controlled clinical trial. Psychiatry Res. 2017; 247: 291–295.
  159. Koola MM, Looney SW, Hong H, et al. Meta-analysis of randomized controlled trials of galantamine in schizophrenia: significant cognitive enhancement. Psychiatry Res. 2020; 291: 113285.
  160. Horisawa T, Ishibashi T, Nishikawa H, et al. The effects of selective antagonists of serotonin 5-HT7 and 5-HT1A receptors on MK-801-induced impairment of learning and memory in the passive avoidance and Morris water maze tests in rats: mechanistic implications for the beneficial effects of the novel atypical antipsychotic lurasidone. Behav Brain Res. 2011; 220(1): 83–90.
  161. Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011; 11(1): 59–67.
  162. Filip M, Gałecki P. Filip M, Gałecki P, Lurazydon – przeciwpsychotyczny lek z uniwersalnym profilem działania farmakologicznego, Psychiatria po Dyplomie, tom 18, nr. ; 1: 2021.
  163. Tanzer T, Shah S, Benson C, et al. Varenicline for cognitive impairment in people with schizophrenia: systematic review and meta-analysis. Psychopharmacology (Berl). 2020; 237(1): 11–19.
  164. Kumar PN, Mohemmedali SP, Anish PK, et al. Cognitive effects with rivastigmine augmentation of risperidone: A 12-month, randomized, double-blind, placebo-controlled study in schizophrenia. Indian J Psychiatry. 2017; 59(2): 219–224.
  165. Park S, Yi KiK, Kim MS, et al. Effects of ziprasidone and olanzapine on body composition and metabolic parameters: an open-label comparative pilot study. Behav Brain Funct. 2013; 9: 27.
  166. Muench J, Hamer AM. Adverse effects of antipsychotic medications. Am Fam Physician. 2010; 81(5): 617–622.
  167. Maric NP, Jovicic MJ, Mihaljevic M, et al. Improving Current Treatments for Schizophrenia. Drug Dev Res. 2016; 77(7): 357–367.
  168. Hasan AAH, Belkum CV. Psychoeducational Interventions for People with Schizophrenia: Findings from the Systematic Reviews. Issues Ment Health Nurs. 2019; 40(6): 518–534.
  169. Wichniak A, Dudek D, Heitzman J, et al. Metabolic risk reduction in patients with schizophrenia treated with antipsychotics: recommendations of the Polish Psychiatric Association. Psychiatr Pol. 2019; 53(6): 1191–1218.
  170. Hasan A, Falkai P, Lehmann I, et al. Schizophrenia. Dtsch Arztebl Int. 2020; 117(24): 412–419.
  171. Al-HadiHasan A, Callaghan P, Lymn JS. Qualitative process evaluation of a psycho-educational intervention targeted at people diagnosed with schizophrenia and their primary caregivers in Jordan. BMC Psychiatry. 2017; 17(1): 68.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Wydawcą serwisu jest Via Medica sp. z o.o. sp. komandytowa, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl