English Polski
Tom 16, Nr 3 (2019)
Artykuł przeglądowy
Opublikowany online: 2019-07-18

dostęp otwarty

Wyświetlenia strony 633
Wyświetlenia/pobrania artykułu 5221
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Wpływ żywienia na zdrowie psychiczne w opinii psychiatry

Krzysztof Szczygieł1, Jerzy Samochowiec1
Psychiatria 2019;16(3):146-153.

Streszczenie

W ostatnich latach rośnie liczba badań dotycząca znaczenia diety wśród pacjentów z zaburzeniami psychicznymi. W większości z nich poruszane są zagadnienia związane z wpływem mikrobioty na stan psychiczny, funkcjonowaniem osi jelitowo-mózgowej, bariery jelitowej, teorii zapalnej zaburzeń psychicznych. Znaczenia nabierają badania dotyczące wykorzystania neuroobrazowania w poznaniu nawyków żywieniowych, zastosowania psychobiotyków, jako formy leczenia wspomagającego w medycynie. Poszukuje się w psychiatrii markerów, które mogłyby posłużyć identyfikacji stanów przedchorobowych i stanów wysokiego ryzyka. Część badaczy upatruje ich w składnikach odżywczych. Niniejsza praca ma na celu przedstawienie zagadnień, które stały się w ostatnich latach interesujące dla wielu badaczy, gdyż obrazują, jak duży wpływ ma odżywianie na patofizjologię zaburzeń psychicznych. Jednocześnie jest próbą podkreślenia znaczenia nutripsychiatrii w dzisiejszych czasach. Próbą pokazania konsekwencji zmian globalnych na codzienne funkcjonowanie człowieka, które znajdują odzwierciedlenie w zdrowiu psychicznym. Dodatkowo pokazuje kierunek dalszych badań w stronę niefarmakologicznych oddziaływań terapeutycznych. Mogą mieć one swój pozytywny skutek, jako dodatkowy czynnik wspierający obecne standardy postępowania leczniczego wobec zaburzeń psychicznych.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Narodowy Program Ochrony Zdrowia Psychicznego na lata 2017-2022. Rozporządzenie Rady Ministrów z dnia 8 lutego 2017 roku.
  2. Kirsch I, Deacon BJ, Huedo-Medina TB, et al. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 2008; 5(2): e45.
  3. Hidaka BH. Depression as a disease of modernity: explanations for increasing prevalence. J Affect Disord. 2012; 140(3): 205–214.
  4. Baxter AJ, Patton G, Scott KM, et al. Global epidemiology of mental disorders: what are we missing? PLoS One. 2013; 8(6): e65514.
  5. Parker E, Goldman J, Moshfegh A. America’s nutrition report card: comparing WWEIA, NHANES 2007–2010 Usual nutrient intakes to dietary reference intakes. FASEB J. 2014; 28 (suppl): 384.2.
  6. Opie RS, Itsiopoulos C, Parletta N, et al. Dietary recommendations for the prevention of depression. Nutr Neurosci. 2017; 20(3): 161–171.
  7. Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013; 11: 200.
  8. Diniz BS, Mendes-Silva AP, Silva LB, et al. Oxidative stress markers imbalance in late-life depression. J Psychiatr Res. 2018; 102: 29–33.
  9. Guimarães LR, Jacka FN, Gama CS, et al. Serum levels of brain-derived neurotrophic factor in schizophrenia on a hypocaloric diet. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(6): 1595–1598.
  10. Lai JS, Hiles S, Bisquera A, et al. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2014; 99(1): 181–197.
  11. Akter S, Nanri A, Mizoue T, et al. Japan Public Health Center–based Prospective Study Group, Japan Public Health Center-Based Prospective Study Group, Japan Public Health Center-Based Prospective Study Group, Japan Public Health Center-based Prospective Study Group, Japan Public Health Center-based Prospective Study Group, Japan Public Health Center-based Prospective Study Group, Japan Public Health Center-based Prospective Study Group, Japan Public Health Center-based Prospective Study Group, Japan Public Health Center-based Prospective Study Group, JPHC FFQ Validation Study Group, Japan Public Health Center-based Prospective Study Group, Japan Public Health Center-based Prospective Study Group, Japan Public Health Center-based Prospective Study Group. Magnesium intake and type II diabetes in Japanese men and women: the Japan Public Health Center-based Prospective Study. Eur J Clin Nutr. 2010; 64(10): 1244–1247.
  12. Jacka FN, O'Neil A, Itsiopoulos C, et al. A randomised controlled trial of dietary improvement for adults with major depression (the 'SMILES' trial). BMC Med. 2017; 15(1): 23.
  13. Mischoulon D, Freeman MP. Omega-3 fatty acids in psychiatry. Psychiatr Clin North Am. 2013; 36(1): 15–23.
  14. Sarris J, Papakostas GI, Vitolo O, et al. S-adenosyl methionine (SAMe) versus escitalopram and placebo in major depression RCT: efficacy and effects of histamine and carnitine as moderators of response. J Affect Disord. 2014; 164: 76–81.
  15. Berk M, Malhi GS, Gray LJ, et al. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci. 2013; 34(3): 167–177.
  16. Lai J, Moxey A, Nowak G, et al. The efficacy of zinc supplementation in depression: systematic review of randomised controlled trials. J Affect Disord. 2012; 136(1-2): e31–e39.
  17. Fava M, Mischoulon D. Folate in depression: efficacy, safety, differences in formulations, and clinical issues. J Clin Psychiatry. 2009; 70 Suppl 5: 12–17.
  18. Eyles DW, Burne THJ, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2013; 34(1): 47–64.
  19. Nyaradi A, Oddy WH, Hickling S, et al. The Relationship between Nutrition in Infancy and Cognitive Performance during Adolescence. Front Nutr. 2015; 2: 2.
  20. Morris MC. Nutritional determinants of cognitive aging and dementia. Proc Nutr Soc. 2012; 71(1): 1–13.
  21. Porubská K, Veit R, Preissl H, et al. Subjective feeling of appetite modulates brain activity: an fMRI study. Neuroimage. 2006; 32(3): 1273–1280.
  22. Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008; 95(2): 131–164.
  23. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011; 378(9793): 804–814.
  24. Herwig U, Dhum M, Hittmeyer A, et al. Neural signaling of food healthiness associated with emotion processing. Front Aging Neurosci. 2016; 8: 16.
  25. Davy SR, Benes BA, Driskell JA. Sex differences in dieting trends, eating habits, and nutrition beliefs of a group of midwestern college students. J Am Diet Assoc. 2006; 106(10): 1673–1677.
  26. Killgore WDS, Yurgelun-Todd DA. Sex differences in cerebral responses to images of high versus low-calorie food. Neuroreport. 2010; 21(5): 354–358.
  27. Lowe M, Fisher E. Emotional reactivity, emotional eating, and obesity: A naturalistic study. Journal of Behavioral Medicine. 1983; 6(2): 135–149.
  28. Maier SU, Makwana AB, Hare TA. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain's decision circuits. Neuron. 2015; 87(3): 621–631.
  29. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489(7415): 220–230.
  30. Schemann M, Neunlist M. The human enteric nervous system. Neurogastroenterol Motil . 2004; 16 (Suppl 1): 55–59.
  31. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol. 2014; 817: 115–133.
  32. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004; 558(Pt 1): 263–275.
  33. Bangsgaard Bendtsen KM, Krych L, Sørensen DB, et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS One. 2012; 7(10): e46231.
  34. Mayer L, Mayer L, Mayer L, et al. Mucosal immunity. Pediatrics. 2003; 111(6 Pt 3): 1595–1600.
  35. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004; 118(2): 229–241.
  36. Lyte M. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes. 2014; 5(3): 381–389.
  37. Hegelstad WT, Larsen TK, Auestad B, et al. Long-term follow-up of the TIPS early detection in psychosis study: effects on 10-year outcome. Am J Psychiatry. 2012; 169(4): 374–380.
  38. McGorry PD, Nelson B, Goldstone S, et al. Clinical staging: a heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Can J Psychiatry. 2010; 55(8): 486–497.
  39. Phillips LJ, McGorry PD, Garner B, et al. Stress, the hippocampus and the hypothalamic-pituitary-adrenal axis: implications for the development of psychotic disorders. Aust N Z J Psychiatry. 2006; 40(9): 725–741.
  40. Zhang TY, Labonté B, Wen XL, et al. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology. 2013; 38(1): 111–123.
  41. Belvederi Murri M, Prestia D, Mondelli V, et al. The HPA axis in bipolar disorder: Systematic review and meta-analysis. Psychoneuroendocrinology. 2016; 63: 327–342.
  42. Pariante CM, Dazzan P, Danese A, et al. Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the AEsop first-onset psychosis study. Neuropsychopharmacology. 2005; 30(10): 1923–1931.
  43. Cohrs S, Röher C, Jordan W, et al. The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacology (Berl). 2006; 185(1): 11–18.
  44. Collip D, Nicolson NA, Lardinois M, et al. G.R.O.U.P. Daily cortisol, stress reactivity and psychotic experiences in individuals at above average genetic risk for psychosis. Psychol Med. 2011; 41(11): 2305–2315.
  45. Miller BJ, Buckley P, Seabolt W, et al. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011; 70(7): 663–671.
  46. Raedler TJ. Inflammatory mechanisms in major depressive disorder. Curr Opin Psychiatry. 2011; 24(6): 519–525.
  47. Wadee AA, Kuschke RH, Wood LA, et al. Serological observations in patients suffering from acute manic episodes. Hum Psychopharmacol. 2002; 17(4): 175–179.
  48. Pasco JA, Jacka FN, Williams LJ, et al. Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychother Psychosom. 2010; 79(5): 323–325.
  49. Do KQ, Cabungcal JH, Frank A, et al. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 2009; 19(2): 220–230.
  50. Nery FG, Monkul ES, Hatch JP, et al. Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol. 2008; 23(2): 87–94.
  51. Müller N, Krause D, Dehning S, et al. Celecoxib treatment in an early stage of schizophrenia: results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res. 2010; 121(1-3): 118–124.
  52. Pasco JA, Jacka FN, Williams LJ, et al. Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychother Psychosom. 2010; 79(5): 323–325.
  53. Parker G, Gibson NA, Brotchie H, et al. Omega-3 fatty acids and mood disorders. Am J Psychiatry. 2006; 163(6): 969–978.
  54. Horrobin DF. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res. 1998; 30(3): 193–208.
  55. Amminger GP, Schäfer MR, Papageorgiou K, et al. Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry. 2010; 67(2): 146–154.
  56. Pasco JA, Nicholson GC, Williams LJ, et al. Association of high-sensitivity C-reactive protein with de novo major depression. Br J Psychiatry. 2010; 197(5): 372–377.
  57. Maes M, Song C, Lin AH, et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology. 1999; 20(4): 370–379.
  58. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011; 36(12): 2452–2459.
  59. Terness P, Bauer TM, Röse L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002; 196(4): 447–457.
  60. Lambert GP. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci. 2009; 87(14 Suppl): E101–E108.
  61. Schmitz H, Fromm M, Bentzel CJ, et al. Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci. 1999; 112 ( Pt 1): 137–146.
  62. Leclercq S, Matamoros S, Cani PD, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A. 2014; 111(42): E4485–E4493.
  63. Tulstrup MVL, Christensen EG, Carvalho V, et al. Antibiotic treatment affects intestinal permeability and gut microbial composition in wistar rats dependent on antibiotic class. PLoS One. 2015; 10(12): e0144854.
  64. Maes M, Bosmans E, Kubera M, et al. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett. 2008; 29(1): 117–124.
  65. Sánchez-Villegas A, Toledo E, de Irala J, et al. Fast-food and commercial baked goods consumption and the risk of depression. Public Health Nutr. 2012; 15(3): 424–432.
  66. Bindels LB, Delzenne NM, Cani PD, et al. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015; 12(5): 303–310.
  67. Messaoudi M, Lalonde R, Violle N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011; 105(5): 755–764.
  68. Łopuszko A, Lebiecka Z, Rudkowski J, et al. Wysiłek fizyczny jako terapia wspomagająca w leczeniu schizofrenii. Psychiatria. 2019; 16(1): 33–43.