dostęp otwarty

Tom 7, Nr 6 (2010)
Artykuł przeglądowy
Opublikowany online: 2011-02-14
Pobierz cytowanie

Genetyka jadłowstrętu psychicznego — istniejący stan wiedzy i perspektywy przyszłych badań

Monika Dmitrzak-Węglarz
Psychiatria 2010;7(6):203-226.

dostęp otwarty

Tom 7, Nr 6 (2010)
Artykuły przeglądowe
Opublikowany online: 2011-02-14

Streszczenie

Jadłowstręt psychiczny należy do złożonych chorób psychicznych o najwyższym wskaźniku śmiertelności. Choroba charakteryzuje się wysokim stopniem odziedziczalności, a wyniki prowadzone od ponad 12 lat badań rodzin i bliźniąt potwierdzają udział podłoża genetycznego w predyspozycji do zachorowania. Niemniej objawy choroby nie zostały jednoznacznie powiązane z molekularnymi mechanizmami etiopatologicznymi, co znacznie utrudnia proces identyfikowania genów predysponujących w jadłowstręcie psychicznym. Badania genów kandydujących początkowo były prowadzone w odniesieniu do głównych neuroprzekaźników ośrodkowego układu nerwowego, takich jak serotonina czy dopamina, oraz genów związanych z regulacją przyjmowania pokarmu i kontroli masy ciała. Kolejnym etapem były badania typu metaanalizy obejmujące duże grupy pacjentów, a także wprowadzenie analiz w wyodrębnionych grupach pacjentów i poszukiwanie endofenotypów. Uzyskane wyniki badań nie przyniosły jednak rozstrzygających rezultatów. Obecnie wkroczono w erę badań asocjacyjnych w skali całego genomu. Badania te trwają i wydaje się, że będą pomocne w wytypowaniu genów i mechanizmów prowadzących do rozwoju choroby, co w efekcie pomoże w opracowaniu skutecznej terapii. Celem niniejszej pracy jest podsumowanie wyników dotychczasowych badań asocjacyjnych w jadłowstręcie psychicznym oraz przedstawienie perspektyw przyszłych badań.
Psychiatria 2010; 7, 6: 203–226

Streszczenie

Jadłowstręt psychiczny należy do złożonych chorób psychicznych o najwyższym wskaźniku śmiertelności. Choroba charakteryzuje się wysokim stopniem odziedziczalności, a wyniki prowadzone od ponad 12 lat badań rodzin i bliźniąt potwierdzają udział podłoża genetycznego w predyspozycji do zachorowania. Niemniej objawy choroby nie zostały jednoznacznie powiązane z molekularnymi mechanizmami etiopatologicznymi, co znacznie utrudnia proces identyfikowania genów predysponujących w jadłowstręcie psychicznym. Badania genów kandydujących początkowo były prowadzone w odniesieniu do głównych neuroprzekaźników ośrodkowego układu nerwowego, takich jak serotonina czy dopamina, oraz genów związanych z regulacją przyjmowania pokarmu i kontroli masy ciała. Kolejnym etapem były badania typu metaanalizy obejmujące duże grupy pacjentów, a także wprowadzenie analiz w wyodrębnionych grupach pacjentów i poszukiwanie endofenotypów. Uzyskane wyniki badań nie przyniosły jednak rozstrzygających rezultatów. Obecnie wkroczono w erę badań asocjacyjnych w skali całego genomu. Badania te trwają i wydaje się, że będą pomocne w wytypowaniu genów i mechanizmów prowadzących do rozwoju choroby, co w efekcie pomoże w opracowaniu skutecznej terapii. Celem niniejszej pracy jest podsumowanie wyników dotychczasowych badań asocjacyjnych w jadłowstręcie psychicznym oraz przedstawienie perspektyw przyszłych badań.
Psychiatria 2010; 7, 6: 203–226
Pobierz cytowanie

Słowa kluczowe

jadłowstręt psychiczny; genetyka molekularna; gen; polimorfizm

Informacje o artykule
Tytuł

Genetyka jadłowstrętu psychicznego — istniejący stan wiedzy i perspektywy przyszłych badań

Czasopismo

Psychiatria

Numer

Tom 7, Nr 6 (2010)

Typ artykułu

Artykuł przeglądowy

Strony

203-226

Opublikowany online

2011-02-14

Wyświetlenia strony

780

Wyświetlenia/pobrania artykułu

3135

Rekord bibliograficzny

Psychiatria 2010;7(6):203-226.

Słowa kluczowe

jadłowstręt psychiczny
genetyka molekularna
gen
polimorfizm

Autorzy

Monika Dmitrzak-Węglarz

Referencje (180)
  1. Halmi KA. Eating disorder in Kaplan & Saddock: a complete textbook on Psychiatry. Wyd. 7. 2000.
  2. Millar HR, Wardell F, Vyvyan JP, et al. Anorexia nervosa mortality in Northeast Scotland, 1965-1999. Am J Psychiatry. 2005; 162(4): 753–757.
  3. Hudson JI, Pope HG, Jonas JM, et al. Family history study of anorexia nervosa and bulimia. The British Journal of Psychiatry. 1983; 142(2): 133–138.
  4. Gorwood P, Adès J, Parmentier G. Anorexia nervosa in one monozygotic twin. Am J Psychiatry. 1998; 155(5): 708.
  5. Stein A, Woolley H, McPherson K. Conflict between mothers with eating disorders and their infants during mealtimes. Br J Psychiatry. 1999; 175: 455–461.
  6. Strober M. Family-genetic studies of eating disorders. J Clin Psychiatry. 1991; 52 Suppl: 9–12.
  7. Strober M, Freeman R, Lampert C, et al. Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry. 2000; 157(3): 393–401.
  8. Bellodi L, Cavallini MC, Bertelli S, et al. Morbidity risk for obsessive-compulsive spectrum disorders in first-degree relatives of patients with eating disorders. Am J Psychiatry. 2001; 158(4): 563–569.
  9. Logue CM, Crowe RR, Bean JA. A family study of anorexia nervosa and bulimia. Compr Psychiatry. 1989; 30(2): 179–188.
  10. Nilsson EW, Gillberg C, Råstam M. Familial factors in anorexia nervosa: a community-based study. Compr Psychiatry. 1998; 39(6): 392–399.
  11. Holland AJ, Hall A, Murray R, et al. Anorexia nervosa: a study of 34 twin pairs and one set of triplets. Br J Psychiatry. 1984; 145: 414–419.
  12. Walters EE, Kendler KS. Anorexia nervosa and anorexic-like syndromes in a population-based female twin sample. Am J Psychiatry. 1995; 152(1): 64–71.
  13. Kipman A, Gorwood P, Mouren-Siméoni MC, et al. Genetic factors in anorexia nervosa. European Psychiatry. 1999; 14(4): 189–198.
  14. Bulik CM, Sullivan PF, Wade TD, et al. Twin studies of eating disorders: a review. Int J Eat Disord. 2000; 27(1): 1–20.
  15. Wade TD, Bulik CM, Neale M, et al. Anorexia nervosa and major depression: shared genetic and environmental risk factors. Am J Psychiatry. 2000; 157(3): 469–471.
  16. Kortegaard LS, Hoerder K, Joergensen J, et al. A preliminary population-based twin study of self-reported eating disorder. Psychol Med. 2001; 31(2): 361–365.
  17. Klump KL, Miller KB, Keel PK, et al. Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychol Med. 2001; 31(4): 737–740.
  18. Kaye WH, Lilenfeld LR, Berrettini WH, et al. A search for susceptibility loci for anorexia nervosa: methods and sample description. Biol Psychiatry. 2000; 47(9): 794–803.
  19. Bergen AW, van den Bree MBM, Yeager M, et al. Candidate genes for anorexia nervosa in the 1p33-36 linkage region: serotonin 1D and delta opioid receptor loci exhibit significant association to anorexia nervosa. Mol Psychiatry. 2003; 8(4): 397–406.
  20. Grice DE, Halmi KA, Fichter MM, et al. Evidence for a susceptibility gene for anorexia nervosa on chromosome 1. Am J Hum Genet. 2002; 70(3): 787–792.
  21. Fumeron F, Betoulle D, Aubert R, et al. Association of a functional 5-HT transporter gene polymorphism with anorexia nervosa and food intake. Mol Psychiatry. 2001; 6(1): 9–10.
  22. Steiger H, Richardson J, Schmitz N, et al. Association of trait-defined, eating-disorder sub-phenotypes with (biallelic and triallelic) 5HTTLPR variations. J Psychiatr Res. 2009; 43(13): 1086–1094.
  23. Kiezebrink K, Mann ET, Bujac SR, et al. Evidence of complex involvement of serotonergic genes with restrictive and binge purge subtypes of anorexia nervosa. World J Biol Psychiatry. 2010; 11(6): 824–833.
  24. Lauzurica N, Hurtado A, Escartí A, et al. Polymorphisms within the promoter and the intron 2 of the serotonin transporter gene in a population of bulimic patients. Neurosci Lett. 2003; 352(3): 226–230.
  25. Levitan RD, Kaplan AS, Masellis M, et al. Polymorphism of the serotonin 5-HT1B receptor gene (HTR1B) associated with minimum lifetime body mass index in women with bulimia nervosa. Biol Psychiatry. 2001; 50(8): 640–643.
  26. Brown KMO, Bujac SR, Mann ET, et al. Further evidence of association of OPRD1 & HTR1D polymorphisms with susceptibility to anorexia nervosa. Biol Psychiatry. 2007; 61(3): 367–373.
  27. Hinney A, Herrmann H, Löhr T, et al. 5-HT2A receptor gene polymorphisms, anorexia nervosa, and obesity. Lancet. 1997; 350(9087): 1324–1325.
  28. Ando T, Komaki G, Karibe M, et al. 5-HT2A promoter polymorphism is not associated with anorexia nervosa in Japanese patients. Psychiatric Genetics. 2001; 11(3): 157–160.
  29. Ricca V, Nacmias B, Boldrini M, et al. Psychopathological traits and 5-HT2A receptor promoter polymorphism (-1438 G/A) in patients suffering from Anorexia Nervosa and Bulimia Nervosa. Neurosci Lett. 2004; 365(2): 92–96.
  30. Fuentes JA, Lauzurica N, Hurtado A, et al. Analysis of the -1438 G/A polymorphism of the 5-HT2A serotonin receptor gene in bulimia nervosa patients with or without a history of anorexia nervosa. Psychiatr Genet. 2004; 14(2): 107–109.
  31. Westberg L, Bah J, Råstam M, et al. Association between a polymorphism of the 5-HT2C receptor and weight loss in teenage girls. Neuropsychopharmacology. 2002; 26(6): 789–793.
  32. Han L, Nielsen DA, Rosenthal NE, et al. No coding variant of the tryptophan hydroxylase gene detected in seasonal affective disorder, obsessive-compulsive disorder, anorexia nervosa, and alcoholism. Biol Psychiatry. 1999; 45(5): 615–619.
  33. Kim YR, Woo JM, Heo SiY, et al. An Association Study of the A218C Polymorphism of the Tryptophan Hydroxylase 1 Gene with Eating Disorders in a Korean Population: A Pilot Study. Psychiatry Investig. 2009; 6(1): 44–49.
  34. Urwin RE, Bennetts BH, Wilcken B, et al. Gene-gene interaction between the monoamine oxidase A gene and solute carrier family 6 (neurotransmitter transporter, noradrenalin) member 2 gene in anorexia nervosa (restrictive subtype). Eur J Hum Genet. 2003; 11(12): 945–950.
  35. Hu X, Karwautz A, Wagner G, et al. No association between a promoter polymorphism in the noradrenaline transporter gene and anorexia nervosa. Psychiatr Genet. 2007; 17(4): 247–248.
  36. Nisoli E, Brunani A, Borgomainerio E, et al. D2 dopamine receptor (DRD2) gene Taq1A polymorphism and the eating-related psychological traits in eating disorders (anorexia nervosa and bulimia) and obesity. Eat Weight Disord. 2007; 12(2): 91–96.
  37. Bergen AW, Yeager M, Welch RA, et al. Association of multiple DRD2 polymorphisms with anorexia nervosa. Neuropsychopharmacology. 2005; 30(9): 1703–1710.
  38. Bruins-Slot L, Gorwood P, Bouvard M, et al. Lack of association between anorexia nervosa and D3 dopamine receptor gene. Biol Psychiatry. 1998; 43(1): 76–78.
  39. Hinney A, Schneider J, Ziegler A, et al. No evidence for involvement of polymorphisms of the dopamine D4 receptor gene in anorexia nervosa, underweight, and obesity. Am J Med Genet. 1999; 88(6): 594–597.
  40. Bachner-Melman R, Lerer E, Zohar AH, et al. Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am J Med Genet B Neuropsychiatr Genet. 2007; 144B(6): 748–756.
  41. Hinney A, Bornscheuer A, Depenbusch M, et al. No evidence for involvement of the leptin gene in anorexia nervosa, bulimia nervosa, underweight or early onset extreme obesity: identification of two novel mutations in the coding sequence and a novel polymorphism in the leptin gene linked upstream region. Mol Psychiatry. 1998; 3(6): 539–543.
  42. Ando T, Komaki G, Nishimura H, et al. Japanese Genetic Research Group for Eating Disorders. A ghrelin gene variant may predict crossover rate from restricting-type anorexia nervosa to other phenotypes of eating disorders: a retrospective survival analysis. Psychiatr Genet. 2010; 20(4): 153–159.
  43. Hinney A, Becker I, Heibült O, et al. Systematic mutation screening of the pro-opiomelanocortin gene: identification of several genetic variants including three different insertions, one nonsense and two missense point mutations in probands of different weight extremes. J Clin Endocrinol Metab. 1998; 83(10): 3737–3741.
  44. Rosenkranz K, Hinney A, Ziegler A, et al. Screening for mutations in the neuropeptide Y Y5 receptor gene in cohorts belonging to different weight extremes. Int J Obes Relat Metab Disord. 1998; 22(2): 157–163.
  45. Brandys MK, van Elburg AA, Loos RJF, et al. Are recently identified genetic variants regulating BMI in the general population associated with anorexia nervosa? Am J Med Genet B Neuropsychiatr Genet. 2010; 153B(2): 695–699.
  46. Mercader JM, Saus E, Agüera Z, et al. Association of NTRK3 and its interaction with NGF suggest an altered cross-regulation of the neurotrophin signaling pathway in eating disorders. Hum Mol Genet. 2008; 17(9): 1234–1244.
  47. Müller TD, Reichwald K, Brönner G, et al. Lack of association of genetic variants in genes of the endocannabinoid system with anorexia nervosa. Child Adolesc Psychiatry Ment Health. 2008; 2(1): 33.
  48. Monteleone P, Bifulco M, Di Filippo C, et al. Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects. Genes Brain Behav. 2009; 8(7): 728–732.
  49. Koronyo-Hamaoui M, Danziger Y, Frisch A, et al. Association between anorexia nervosa and the hsKCa3 gene: a family-based and case control study. Mol Psychiatry. 2002; 7(1): 82–85.
  50. Koronyo-Hamaoui M, Frisch A, Stein D, et al. Dual contribution of NR2B subunit of NMDA receptor and SK3 Ca(2+)-activated K+ channel to genetic predisposition to anorexia nervosa. J Psychiatr Res. 2007; 41(1-2): 160–167.
  51. Ishiguro H, Onaivi ES, Horiuchi Y. Functional polymorphism in the GPR55 gene is associated with anorexia nervosa. , Synapse 2010.
  52. Tortorella A, Monteleone P, Martiadis V, et al. The 3111T/C polymorphism of the CLOCK gene confers a predisposition to a lifetime lower body weight in patients with anorexia nervosa and bulimia nervosa: a preliminary study. Am J Med Genet B Neuropsychiatr Genet. 2007; 144B(8): 992–995.
  53. Silverstone T, Goodall E. Serotoninergic mechanisms in human feeding: the pharmacological evidence. Appetite. 1986; 7 Suppl: 85–97.
  54. Leibowitz SF, Alexander JT. Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol Psychiatry. 1998; 44(9): 851–864.
  55. Kaye WH, Rubinow D, Gwirtsman HE, et al. CSF somatostatin in anorexia nervosa and bulimia: relationship to the hypothalamic pituitary-adrenal cortical axis. Psychoneuroendocrinology. 1988; 13(3): 265–272.
  56. Kaye WH, Gwirtsman HE, George DT, et al. Altered serotonin activity in anorexia nervosa after long-term weight restoration. Does elevated cerebrospinal fluid 5-hydroxyindoleacetic acid level correlate with rigid and obsessive behavior? Arch Gen Psychiatry. 1991; 48(6): 556–562.
  57. Godart NT, Flament MF, Perdereau F, et al. Comorbidity between eating disorders and anxiety disorders: a review. Int J Eat Disord. 2002; 32(3): 253–270.
  58. Kaye WH, Bulik CM, Thornton L, et al. Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry. 2004; 161(12): 2215–2221.
  59. Charney DS, Deutch A. A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol. 1996; 10(3-4): 419–446.
  60. Cloninger C. A Psychobiological Model of Temperament and Character. Archives of General Psychiatry. 1993; 50(12): 975–990.
  61. Bailer UF, Price JC, Meltzer CC, et al. Altered 5-HT(2A) receptor binding after recovery from bulimia-type anorexia nervosa: relationships to harm avoidance and drive for thinness. Neuropsychopharmacology. 2004; 29(6): 1143–1155.
  62. Kaye WH, Bailer UF, Frank GK, et al. Brain imaging of serotonin after recovery from anorexia and bulimia nervosa. Physiol Behav. 2005; 86(1-2): 15–17.
  63. Kaye WH, Frank GK, Bailer UF, et al. Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies. Physiol Behav. 2005; 85(1): 73–81.
  64. Simansky KJ. Serotonergic control of the organization of feeding and satiety. Behav Brain Res. 1996; 73(1-2): 37–42.
  65. Bailer UF, Price JC, Meltzer CC, et al. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry. 2002; 52(9): 896–906.
  66. Audenaert K, Van Laere K, Dumont F, et al. Decreased 5-HT2a receptor binding in patients with anorexia nervosa. J Nucl Med. 2003; 44(2): 163–169.
  67. Collier DA, Arranz MJ, Li T, et al. Association between 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet. 1997; 350(9075): 412.
  68. Enoch MA, Kaye WH, Rotondo A, et al. 5-HT2A promoter polymorphism -1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet. 1998; 351(9118): 1785–1786.
  69. Ricca V, Nacmias B, Cellini E, et al. 5-HT2A receptor gene polymorphism and eating disorders. Neurosci Lett. 2002; 323(2): 105–108.
  70. Ricca V, Nacmias B, Boldrini M, et al. EC Framework V 'Factors in Healthy Eating' consortium. 5-HT2A promoter polymorphism in anorexia nervosa. Lancet. 1998; 351(9118): 1785.
  71. Ricca V, Nacmias B, Boldrini M, et al. EC Framework V 'Factors in Healthy Eating' consortium. 5-HT2A promoter polymorphism in anorexia nervosa. Lancet. 1998; 351(9118): 1785–136.
  72. Hinney A, Barth N, Ziegler A, et al. Serotonin transporter gene-linked polymorphic region: Allele distributions in relationship to body weight and in anorexia nervosa. Life Sciences. 1997; 61(21): PL295–PL303.
  73. Campbell DA, Sundaramurthy D, Markham AF, et al. Lack of association between 5-HT2A gene promoter polymorphism and susceptibility to anorexia nervosa. Lancet. 1998; 351(9101): 499.
  74. Ziegler A, Hebebrand J, Görg T, et al. Further lack of association between the 5-HT2A gene promoter polymorphism and susceptibility to eating disorders and a meta-analysis pertaining to anorexia nervosa. Mol Psychiatry. 1999; 4(5): 410–412.
  75. Nishiguchi N, Matsushita S, Suzuki K, et al. Association between 5HT2A receptor gene promoter region polymorphism and eating disorders in Japanese patients. Biol Psychiatry. 2001; 50(2): 123–128.
  76. Karwautz A, Rabe-Hesketh S, Hu X, et al. Individual-specific risk factors for anorexia nervosa: a pilot study using a discordant sister-pair design. Psychol Med. 2001; 31(2): 317–329.
  77. Ando T, Ishikawa T, Kawamura N, et al. Analysis of tumor necrosis factor-alpha gene promoter polymorphisms in anorexia nervosa. Psychiatr Genet. 2001; 11(3): 161–164.
  78. Gorwood P, Adès J, Bellodi L, et al. EC Framework V 'Factors in Healthy Eating' consortium. The 5-HT(2A) -1438G/A polymorphism in anorexia nervosa: a combined analysis of 316 trios from six European centres. Mol Psychiatry. 2002; 7(1): 90–94.
  79. Kipman A, Bruins-Slot L, Boni C, et al. 5-HT(2A) gene promoter polymorphism as a modifying rather than a vulnerability factor in anorexia nervosa. Eur Psychiatry. 2002; 17(4): 227–229.
  80. Rybakowski F, Slopien A, Dmitrzak-Weglarz M, et al. Association study of 5-HT2A receptor gene polymorphism in anorexia nervosa in ish population. Psychiatr Pol. 2003; 37(1): 47–55.
  81. Gorwood P. The human genetics of anorexia nervosa. European Journal of Pharmacology. 2003; 480(1-3): 163–170.
  82. Martásková D, Slachtová L, Kemlink D, et al. Polymorphisms in serotonin-related genes in anorexia nervosa. The first study in Czech population and metaanalyses with previously performed studies. Folia Biol (Praha). 2009; 55(5): 192–197.
  83. Chen K, Yang W, Grimsby J, et al. The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Brain Res Mol Brain Res. 1992; 14(1-2): 20–26.
  84. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002; 71(4): 533–554.
  85. Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996; 66(6): 2621–2624.
  86. Greenberg B, Tolliver T, Huang S, et al. Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. American Journal of Medical Genetics. 1999; 88(1): 83–87, doi: 10.1002/(sici)1096-8628(19990205)88:1<83::aid-ajmg15>3.3.co;2-s.
  87. Heils A, Mössner R, Lesch KP. The human serotonin transporter gene polymorphism--basic research and clinical implications. J Neural Transm (Vienna). 1997; 104(10): 1005–1014.
  88. Matsushita S, Suzuki K, Murayama M, et al. Serotonin transporter regulatory region polymorphism is associated with anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet. 2004; 128B(1): 114–117.
  89. Di Bella DD, Catalano M, Cavallini MC, et al. Serotonin transporter linked polymorphic region in anorexia nervosa and bulimia nervosa. Mol Psychiatry. 2000; 5(3): 233–234.
  90. Sundaramurthy D, Pieri LF, Gape H, et al. Analysis of the serotonin transporter gene linked polymorphism (5-HTTLPR) in anorexia nervosa. Am J Med Genet. 2000; 96(1): 53–55.
  91. Ehrlich S, Franke L, Scherag S, et al. The 5-HTTLPR polymorphism, platelet serotonin transporter activity and platelet serotonin content in underweight and weight-recovered females with anorexia nervosa. Eur Arch Psychiatry Clin Neurosci. 2010; 260(6): 483–490.
  92. Gorwood P. Eating disorders, serotonin transporter polymorphisms and potential treatment response. Am J Pharmacogenomics. 2004; 4(1): 9–17.
  93. Lee Yu, Lin PY. Association between serotonin transporter gene polymorphism and eating disorders: a meta-analytic study. Int J Eat Disord. 2010; 43(6): 498–504.
  94. Calati R, De Ronchi D, Bellini M, et al. The 5-HTTLPR polymorphism and eating disorders: a meta-analysis. Int J Eat Disord. 2011; 44(3): 191–199.
  95. Kaye WH, Jimerson DC, Lake CR, et al. Altered norepinephrine metabolism following long-term weight recovery in patients with anorexia nervosa. Psychiatry Res. 1985; 14(4): 333–342.
  96. Kaye WH, Gwirtsman HE, Lake CR, et al. Disturbances of norepinephrine metabolism and alpha-2 adrenergic receptor activity in anorexia nervosa: relationship to nutritional state. Psychopharmacol Bull. 1985; 21(3): 419–423.
  97. Pirke KM, Kellner M, Philipp E, et al. Plasma norepinephrine after a standardized test meal in acute and remitted patients with anorexia nervosa and in healthy controls. Biol Psychiatry. 1992; 31(10): 1074–1077.
  98. Kim CH, Kim HS, Cubells JF, et al. A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem. 1999; 274(10): 6507–6518.
  99. Urwin RE, Bennetts B, Wilcken B, et al. Anorexia nervosa (restrictive subtype) is associated with a polymorphism in the novel norepinephrine transporter gene promoter polymorphic region. Mol Psychiatry. 2002; 7(6): 652–657.
  100. Urwin RE, Bennetts BH, Wilcken B, et al. Investigation of epistasis between the serotonin transporter and norepinephrine transporter genes in anorexia nervosa. Neuropsychopharmacology. 2003; 28(7): 1351–1355.
  101. Kostowski W. Dopamina a mechanizmy nagrody i rozwój uzależnień: fakty i hipotezy. Alkoholizm i Narkomania. 2000; 13(2): 189–208.
  102. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988; 85(14): 5274–5278.
  103. Pontieri FE, Tanda G, Di Chiara G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the "shell" as compared with the "core" of the rat nucleus accumbens. Proc Natl Acad Sci U S A. 1995; 92(26): 12304–12308.
  104. Gorwood P, Bouvard M, Mouren-Siméoni MC, et al. Genetics and anorexia nervosa: a review of candidate genes. Psychiatr Genet. 1998; 8(1): 1–12.
  105. Sato T, Meguid MM, Fetissov SO, et al. Hypothalamic dopaminergic receptor expressions in anorexia of tumor-bearing rats. Am J Physiol Regul Integr Comp Physiol. 2001; 281(6): R1907–R1916.
  106. Meguid M, Fetissov S, Varma M, et al. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition. 2000; 16(10): 843–857.
  107. Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996; 6(3): 243–250.
  108. Frisch A, Laufer N, Danziger Y, et al. Association of anorexia nervosa with the high activity allele of the COMT gene: a family-based study in Israeli patients. Mol Psychiatry. 2001; 6(2): 243–245.
  109. Michaelovsky E, Frisch A, Leor S, et al. Haplotype analysis of the COMT-ARVCF gene region in Israeli anorexia nervosa family trios. Am J Med Genet B Neuropsychiatr Genet. 2005; 139B(1): 45–50.
  110. Frieling H, Römer KD, Wilhelm J, et al. Association of catecholamine-O-methyltransferase and 5-HTTLPR genotype with eating disorder-related behavior and attitudes in females with eating disorders. Psychiatr Genet. 2006; 16(5): 205–208.
  111. Mikołajczyk E, Grzywacz A, Samochowiec J. The association of catechol-O-methyltransferase genotype with the phenotype of women with eating disorders. Brain Res. 2010; 1307: 142–148.
  112. Mikołajczyk E, Smiarowska M, Grzywacz A, et al. Association of eating disorders with catechol-o-methyltransferase gene functional polymorphism. Neuropsychobiology. 2006; 54(1): 82–86.
  113. Gabrovsek M, Brecelj-Anderluh M, Bellodi L, et al. Combined family trio and case-control analysis of the COMT Val158Met polymorphism in European patients with anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet. 2004; 124B(1): 68–72.
  114. Dmitrzak-Weglarz M, Rybakowski F, Slopien A, et al. Candidate genes of the dopaminergic system in anorexia nervosa. Postępy Psychiatrii i Neurologii. 2004; 13(3): 53–62.
  115. Dmitrzak-Weglarz M, Slopien A, Rybakowski F, et al. An association study of the Dopamine Transporter (DAT) gene and catechol-O-methyltransferase (COMT) gene in anorexia nervosa in the Polish population. Archives of Psychiatry and Psychotherapy. 2005; 7(3): 5–11.
  116. Stellar E. The physiology of motivation. Psychological Review. 1994; 101(2): 301–311.
  117. Hahn TM, Breininger JF, Baskin DG, et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998; 1(4): 271–272.
  118. Currie PJ, Coscina DV. Dissociated feeding and hypothermic effects of neuropeptide Y in the paraventricular and perifornical hypothalamus. Peptides. 1995; 16(4): 599–604.
  119. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996; 381(6581): 415–421.
  120. Stephens TW, Basinski M, Bristow PK, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995; 377(6549): 530–532.
  121. Lu D, Willard D, Patel IR, et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. 1994; 371(6500): 799–802.
  122. Fong TM, Mao C, MacNeil T, et al. ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem Biophys Res Commun. 1997; 237(3): 629–631.
  123. Dinulescu DM, Cone RD. Agouti and agouti-related protein: analogies and contrasts. J Biol Chem. 2000; 275(10): 6695–6698.
  124. Inui A. Eating behavior in anorexia nervosa--an excess of both orexigenic and anorexigenic signalling? Mol Psychiatry. 2001; 6(6): 620–624.
  125. Chen AS, Metzger JM, Trumbauer ME, et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res. 2000; 9(2): 145–154.
  126. Vergoni AV, Bertolini A. Role of melanocortins in the central control of feeding. Eur J Pharmacol. 2000; 405(1-3): 25–32.
  127. Larsen PJ, Vrang N, Petersen PC, et al. Chronic intracerebroventricular administration of recombinant CART(42-89) peptide inhibits and causes weight loss in lean and obese Zucker (fa/fa) rats. Obes Res. 2000; 8(8): 590–596.
  128. Quinton ND, Meechan DW, Brown K, et al. Single nucleotide polymorphisms in the leptin receptor gene: studies in anorexia nervosa. Psychiatr Genet. 2004; 14(4): 191–194.
  129. Vink T, Hinney A, van Elburg AA, et al. Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol Psychiatry. 2001; 6(3): 325–328.
  130. Dardennes RM, Zizzari P, Tolle V, et al. Family trios analysis of common polymorphisms in the obestatin/ghrelin, BDNF and AGRP genes in patients with Anorexia nervosa: association with subtype, body-mass index, severity and age of onset. Psychoneuroendocrinology. 2007; 32(2): 106–113.
  131. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999; 402(6762): 656–660.
  132. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001; 86(10): 4753–4758.
  133. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001; 409(6817): 194–198.
  134. Ando T, Komaki G, Naruo T, et al. Possible role of preproghrelin gene polymorphisms in susceptibility to bulimia nervosa. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B(8): 929–934.
  135. Monteleone P, Tortorella A, Castaldo E, et al. No association of the Arg51Gln and Leu72Met polymorphisms of the ghrelin gene with anorexia nervosa or bulimia nervosa. Neuroscience Letters. 2006; 398(3): 325–327.
  136. Cellini E, Nacmias B, Brecelj-Anderluh M, et al. EC Framework V 'Factors in Healthy Eating' consortium. Case-control and combined family trios analysis of three polymorphisms in the ghrelin gene in European patients with anorexia and bulimia nervosa. Psychiatr Genet. 2006; 16(2): 51–52.
  137. Strader AD, Woods SC, Strader AD, et al. Gastrointestinal hormones and food intake. Gastroenterology. 2005; 128(1): 175–191.
  138. de Krom M, Hendriks J, Hillebrand J, et al. A polymorphism in the 3' untranslated region of the CCK gene is associated with anorexia nervosa in Dutch patients. Psychiatr Genet. 2006; 16(6): 239.
  139. Miyasaka K, Hosoya H, Sekime A, et al. Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population. J Neural Transm (Vienna). 2006; 113(9): 1279–1285.
  140. Sokoloff P, Guillin O, Diaz J, et al. Brain-derived neurotrophic factor controls dopamine D3 receptor expression: implications for neurodevelopmental psychiatric disorders. Neurotox Res. 2002; 4(7-8): 671–678.
  141. Lindsay RM. Neuron saving schemes. Nature. 1995; 373(6512): 289–290.
  142. Liu X, Ernfors P, Wu H, et al. Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature. 1995; 375(6528): 238–241.
  143. Squinto SP, Stitt TN, Aldrich TH, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell. 1991; 65(5): 885–893.
  144. Lapchak PA, Hefti F. BDNF and NGF treatment in lesioned rats: effects on cholinergic function and weight gain. Neuroreport. 1992; 3(5): 405–408.
  145. Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp Neurol. 1995; 131(2): 229–238.
  146. Ribasés M, Gratacòs M, Armengol L, et al. Met66 in the brain-derived neurotrophic factor (BDNF) precursor is associated with anorexia nervosa restrictive type. Mol Psychiatry. 2003; 8(8): 745–751.
  147. Ribases M, Gratacos M, Badia A, et al. Contribution of NTRK2 to the genetic susceptibility to anorexia nervosa, harm avoidance and minimum body mass index. Mol Psychiatry. 2005; 10(9): 851–860.
  148. Ribasés M, Gratacòs M, Fernández-Aranda F, et al. Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum Mol Genet. 2004; 13(12): 1205–1212.
  149. Koizumi H, Hashimoto K, Itoh K, et al. Association between the brain-derived neurotrophic factor 196G/A polymorphism and eating disorders. Am J Med Genet B Neuropsychiatr Genet. 2004; 127B(1): 125–127.
  150. Rybakowski F, Dmitrzak-Weglarz M, Szczepankiewicz A, et al. Brain derived neurotrophic factor gene Val66Met and -270C/T polymorphisms and personality traits predisposing to anorexia nervosa. Neuro Endocrinol Lett. 2007; 28(2): 153–158.
  151. Dmitrzak-Weglarz M, Skibinska M, Slopien A, et al. BDNF Met66 allele is associated with anorexia nervosa in the Polish population. Psychiatr Genet. 2007; 17(4): 245–246.
  152. Friedel S, Horro FF, Wermter AK, et al. Mutation screen of the brain derived neurotrophic factor gene (BDNF): identification of several genetic variants and association studies in patients with obesity, eating disorders, and attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2005; 132B(1): 96–99.
  153. Støving RK, Andries A, Brixen K, et al. Leptin, ghrelin, and endocannabinoids: potential therapeutic targets in anorexia nervosa. J Psychiatr Res. 2009; 43(7): 671–679.
  154. Siegfried Z, Kanyas K, Latzer Y, et al. Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and binging/purging subtypes. Am J Med Genet B Neuropsychiatr Genet. 2004; 125B(1): 126–130.
  155. Müller TD, Brönner G, Wandolski M, et al. Mutation screen and association studies for the fatty acid amide hydrolase (FAAH) gene and early onset and adult obesity. BMC Med Genet. 2010; 11: 2.
  156. Hinney A, Lentes KU, Rosenkranz K, et al. β3-adrenergic-receptor allele distributions in children, adolescents and young adults with obesity, underweight or anorexia nervosa. International Journal of Obesity. 1997; 21(3): 224–230.
  157. Campbell DA, Sundaramurthy D, Gordon D, et al. Association between a marker in the UCP-2/UCP-3 gene cluster and genetic susceptibility to anorexia nervosa. Mol Psychiatry. 1999; 4(1): 68–70.
  158. Hu X, Murphy F, Karwautz A, et al. Analysis of microsatellite markers at the UCP2/UCP3 locus on chromosome 11q13 in anorexia nervosa. Mol Psychiatry. 2002; 7(3): 276–277.
  159. Ando T, Kodama N, Ishikawa T, et al. Uncoupling protein-2/uncoupling protein-3 gene polymorphism is not associated with anorexia nervosa. Psychiatr Genet. 2004; 14(4): 215–218.
  160. Rosenkranz K, Hinney A, Ziegler A, et al. Systematic mutation screening of the estrogen receptor beta gene in probands of different weight extremes: identification of several genetic variants. J Clin Endocrinol Metab. 1998; 83(12): 4524–4527.
  161. Eastwood H, Brown KMO, Markovic D, et al. Variation in the ESR1 and ESR2 genes and genetic susceptibility to anorexia nervosa. Mol Psychiatry. 2002; 7(1): 86–89.
  162. Versini A, Ramoz N, Le Strat Y, et al. Estrogen receptor 1 gene (ESR1) is associated with restrictive anorexia nervosa. Neuropsychopharmacology. 2010; 35(8): 1818–1825.
  163. Toomey D, Redmond HP, Bouchier-Hayes D. Mechanisms mediating cancer cachexia. Cancer. 1995; 76(12): 2418–2426.
  164. Darling G, Fraker DL, Jensen JC, et al. Cachectic effects of recombinant human tumor necrosis factor in rats. Cancer Res. 1990; 50(13): 4008–4013.
  165. Nakai Y, Hamagaki S, Takagi R, et al. Plasma concentrations of tumor necrosis factor-alpha (TNF-alpha) and soluble TNF receptors in patients with anorexia nervosa. J Clin Endocrinol Metab. 1999; 84(4): 1226–1228.
  166. Kanbur N, Mesci L, Derman O, et al. Tumor necrosis factor alpha-308 gene polymorphism in patients with anorexia nervosa. Turk J Pediatr. 2008; 50(3): 219–222.
  167. Slopien A, Rybakowski F, Dmitrzak-Weglarz M, et al. TNF-α and intPLA2 genes' polymorphism in anorexia nervosa . Acta Neuropsychiatrica. 2014; 16(06): 290–294.
  168. Nakabayashi K, Komaki G, Tajima A, et al. Japanese Genetic Research Group for Eating Disorders (JGRED). Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. J Hum Genet. 2009; 54(9): 531–537.
  169. Kaye W, Bulik C, Plotnicov K, et al. The genetics of anorexia nervosa collaborative study: Methods and sample description. International Journal of Eating Disorders. 2008; 41(4): 289–300.
  170. Pinheiro AP, Bulik CM, Thornton LM, et al. Association study of 182 candidate genes in anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet. 2010; 153B(5): 1070–1080.
  171. Frieling H, Gozner A, Römer KD, et al. Alpha-synuclein mRNA levels correspond to beck depression inventory scores in females with eating disorders. Neuropsychobiology. 2008; 58(1): 48–52.
  172. Frieling H, Römer K, Scholz S, et al. Epigenetic dysregulation of dopaminergic genes in eating disorders. International Journal of Eating Disorders. 2009; 43(7): 577–583.
  173. Frieling H, Bleich S, Otten J, et al. Epigenetic downregulation of atrial natriuretic peptide but not vasopressin mRNA expression in females with eating disorders is related to impulsivity. Neuropsychopharmacology. 2008; 33(11): 2605–2609.
  174. Ribasés M, Gratacòs M, Fernández-Aranda F, et al. Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. Eur J Hum Genet. 2005; 13(4): 428–434.
  175. Holliday J, Tchanturia K, Landau S, et al. Is impaired set-shifting an endophenotype of anorexia nervosa? Am J Psychiatry. 2005; 162(12): 2269–2275.
  176. Shroff H, Reba L, Thornton LM, et al. Features associated with excessive exercise in women with eating disorders. Int J Eat Disord. 2006; 39(6): 454–461.
  177. Lopez C, Tchanturia K, Stahl D, et al. Weak central coherence in eating disorders: a step towards looking for an endophenotype of eating disorders. J Clin Exp Neuropsychol. 2009; 31(1): 117–125.
  178. Rybakowski F, Slopien A, Dmitrzak-Weglarz M, et al. The 5-HT2A -1438 A/G and 5-HTTLPR polymorphisms and personality dimensions in adolescent anorexia nervosa: association study. Neuropsychobiology. 2006; 53(1): 33–39.
  179. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007; 447(7145): 661–678.
  180. Manolio TA, Rodriguez LL, Brooks L, et al. GAIN Collaborative Research Group, Collaborative Association Study of Psoriasis, International Multi-Center ADHD Genetics Project, Molecular Genetics of Schizophrenia Collaboration, Bipolar Genome Study, Major Depression Stage 1 Genomewide Association in Population-Based Samples Study, Genetics of Kidneys in Diabetes (GoKinD) Study. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat Genet. 2007; 39(9): 1045–1051.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

Wydawcą serwisu jest VM Media Group sp z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl