English Polski
Tom 19 (2024): Continuous Publishing
Artykuł przeglądowy
Opublikowany online: 2024-11-19

dostęp otwarty

Wyświetlenia strony 59
Wyświetlenia/pobrania artykułu 36
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Nie otwieraj bram dla sepsy — znaczenie leczenia żywieniowego dla dobrostanu mikrobioty jelitowej pacjentów chorych krytycznie

Dorota Mańkowska-Wierzbicka1
DOI: 10.5603/pżk.102785
Postępy Żywienia Klinicznego 2024;19:133-138.

Streszczenie

Sepsa jest jedną z głównych przyczyn śmiertelności na świecie i stanowi poważne wyzwanie dla systemów opieki zdrowotnej. Odpowiada za około 26% zgonów na całym świecie i dotyka zarówno pacjentów ciężko chorych na oddziałach intensywnej terapii, jak i hospitalizowanych z innych powodów. Mikrobiota jelitowa, określana jako „drugi genom”, odgrywa kluczową rolę w zdrowiu człowieka, zwłaszcza w regulacji odpowiedzi immunologicznej. Choroba krytyczna, w tym sepsa, zakłóca równowagę mikrobioty jelitowej, prowadząc do dysbiozy, co z kolei wiąże się z wyższym ryzykiem infekcji i niewydolności narządów. Wczesne żywienie dojelitowe (EN) jest zalecane jako ważna interwencja wspierająca mikrobiotę jelitową u pacjentów w stanie krytycznym. Żywienie dojelitowe pomaga w utrzymaniu bariery jelitowej, redukuje translokację bakterii i zapobiega ogólnoustrojowym reakcjom zapalnym. Badania pokazują, że wczesne EN korzystnie wpływa na zdrowie jelit, podczas gdy wyłączne żywienie pozajelitowe (PN) może przyczyniać się do pogorszenia dysbiozy i w konsekwencji gorszych wyników leczenia. Włączenie wsparcia żywieniowego do terapii sepsy jest kluczowe, ponieważ wpływa nie tylko na bilans energetyczny, ale także na jakość mikrobiomu jelitowego oraz integralność bariery jelitowej, co może poprawić wyniki leczenia i przyspieszyć powrót do zdrowia.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Rhee C, Dantes R, Epstein L, et al. CDC Prevention Epicenter Program. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. JAMA. 2017; 318(13): 1241–1249.
  2. Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020; 46(8): 1552–1562.
  3. Prescott HC, Osterholzer JJ, Langa KM, et al. Late mortality after sepsis: propensity matched cohort study. BMJ. 2016; 353: i2375.
  4. Yende S, Austin S, Rhodes A, et al. Long-Term Quality of Life Among Survivors of Severe Sepsis: Analyses of Two International Trials. Crit Care Med. 2016; 44(8): 1461–1467.
  5. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 801–810.
  6. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 762–774.
  7. Minasyan H. Sepsis and septic shock: Pathogenesis and treatment perspectives. J Crit Care. 2017; 40: 229–242.
  8. Armstrong BA, Betzold RD, May AK. Sepsis and Septic Shock Strategies. Surg Clin North Am. 2017; 97(6): 1339–1379.
  9. Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol. 2017; 2(2): 135–143.
  10. Spanogiannopoulos P, Bess EN, Carmody RN, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016; 14(5): 273–287.
  11. Akash MS, Fiayyaz F, Rehman K, et al. Gut Microbiota and Metabolic Disorders: Advances in Therapeutic Interventions. Crit Rev Immunol. 2019; 39(4): 223–237.
  12. Firmino FC, Porcellato D, Cox M, et al. Characterization of microbial communities in ethanol biorefineries. J Ind Microbiol Biotechnol. 2020; 47(2): 183–195.
  13. Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016; 352(6285): 535–538.
  14. Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013; 13(5): 321–335.
  15. Blacher E, Levy M, Tatirovsky E, et al. Microbiome-Modulated Metabolites at the Interface of Host Immunity. J Immunol. 2017; 198(2): 572–580.
  16. Feng Y, Wang Yu, Wang P, et al. Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy. Cell Physiol Biochem. 2018; 49(1): 190–205.
  17. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014; 38(5): 996–1047.
  18. Miller WD, Keskey R, Alverdy JC. Sepsis and the Microbiome: A Vicious Cycle. J Infect Dis. 2021; 223(12 Suppl 2): S264–S269.
  19. Schlechte J, Zucoloto AZ, Yu IL, et al. Dysbiosis of a microbiota-immune metasystem in critical illness is associated with nosocomial infections. Nat Med. 2023; 29(4): 1017–1027.
  20. Hayakawa M, Asahara T, Henzan N, et al. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig Dis Sci. 2011; 56(8): 2361–2365.
  21. McDonald D, Ackermann G, Khailova L, et al. Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere. 2016; 1(4).
  22. Zaborin A, Smith D, Garfield K, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio. 2014; 5(5): e01361–e01314.
  23. Vincent JL, Sakr Y, Singer M, et al. EPIC III Investigators. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA. 2020; 323(15): 1478–1487.
  24. Dickson RP. The microbiome and critical illness. Lancet Respir Med. 2016; 4(1): 59–72.
  25. Klingensmith NJ, Coopersmith CM. Gut Microbiome in Sepsis. Surg Infect (Larchmt). 2023; 24(3): 250–257.
  26. Ubeda C, Taur Y, Jenq RR, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010; 120(12): 4332–4341.
  27. Taur Y, Xavier JB, Lipuma L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012; 55(7): 905–914.
  28. Shimizu K, Ogura H, Goto M, et al. Altered gut flora and environment in patients with severe SIRS. J Trauma. 2006; 60(1): 126–133.
  29. Zhao X, Jiang Z, Yang F, et al. Sensitive and Simplified Detection of Antibiotic Influence on the Dynamic and Versatile Changes of Fecal Short-Chain Fatty Acids. PLoS One. 2016; 11(12): e0167032.
  30. Potruch A, Schwartz A, Ilan Y. The role of bacterial translocation in sepsis: a new target for therapy. Therap Adv Gastroenterol. 2022; 15: 17562848221094214.
  31. Moron R, Galvez J, Colmenero M, et al. The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients. 2019; 11(12).
  32. Baggs J, Jernigan JA, Halpin AL, et al. Risk of Subsequent Sepsis Within 90 Days After a Hospital Stay by Type of Antibiotic Exposure. Clin Infect Dis. 2018; 66(7): 1004–1012.
  33. Prescott HC, Dickson RP, Rogers MAM, et al. Hospitalization Type and Subsequent Severe Sepsis. Am J Respir Crit Care Med. 2015; 192(5): 581–588.
  34. Alshehri D, Saadah O, Mosli M, et al. Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches. Bosn J Basic Med Sci. 2021; 21(3): 270–283.
  35. Carrico CJ, Meakins JL, Marshall JC, et al. Multiple-organ-failure syndrome. Arch Surg. 1986; 121(2): 196–208.
  36. Yang XJ, Wang XH, Yang MY, et al. Exploring choices of early nutritional support for patients with sepsis based on changes in intestinal microecology. World J Gastroenterol. 2023; 29(13): 2034–2049.
  37. Zaher S. Nutrition and the gut microbiome during critical illness: A new insight of nutritional therapy. Saudi J Gastroenterol. 2020 [Epub ahead of print]; 26(6): 290–298.
  38. Barash M, Patel J. Gut Luminal and Clinical Benefits of Early Enteral Nutrition in Shock. Current Surgery Reports. 2019; 7(10).
  39. Serbanescu MA, Da Silva M, Zaky A. Impact of Intensive Care Unit Nutrition on the Microbiome and Patient Outcomes. Anesthesiol Clin. 2023; 41(1): 263–281.
  40. Lubbers T, Kox M, de Haan JJ, et al. Continuous administration of enteral lipid- and protein-rich nutrition limits inflammation in a human endotoxemia model. Crit Care Med. 2013; 41(5): 1258–1265.
  41. Allaire JM, Morampudi V, Crowley SM, et al. Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. Am J Physiol Gastrointest Liver Physiol. 2018; 314(3): G360–G377.
  42. Haak BW, Prescott HC, Wiersinga WJ. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Front Immunol. 2018; 9: 2042.
  43. Davison JM, Wischmeyer PE. Probiotic and synbiotic therapy in the critically ill: State of the art. Nutrition. 2019; 59: 29–36.
  44. Shimizu K, Yamada T, Ogura H, et al. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: a randomized controlled trial. Crit Care. 2018; 22(1): 239.
  45. Shimizu K, Ogura H, Asahara T, et al. Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: a preliminary study. Neurogastroenterol Motil. 2011; 23(4): 330–5, e157.
  46. Demehri FR, Barrett M, Teitelbaum DH. Changes to the Intestinal Microbiome With Parenteral Nutrition: Review of a Murine Model and Potential Clinical Implications. Nutr Clin Pract. 2015; 30(6): 798–806.
  47. Alverdy J, Gilbert J, DeFazio JR, et al. Proceedings of the 2013 A.S.P.E.N. Research workshop: the interface between nutrition and the gut microbiome: implications and applications for human health [corrected]. JPEN J Parenter Enteral Nutr. 2014; 38(2): 167–178.
  48. Ralls MW, Demehri FR, Feng Y, et al. Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function. Surgery. 2015; 157(4): 732–742.
  49. Barrett M, Demehri FR, Teitelbaum DH. Intestine, immunity, and parenteral nutrition in an era of preferred enteral feeding. Curr Opin Clin Nutr Metab Care. 2015; 18(5): 496–500.
  50. Wan X, Bi J, Gao X, et al. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice. Nutrients. 2015; 7(8): 6294–6312.
  51. Singer P, Blaser AR, Berger MM, et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin Nutr. 2023; 42(9): 1671–1689.