English Polski
Tom 19 (2024): Continuous Publishing
Artykuł przeglądowy
Opublikowany online: 2024-10-28

dostęp otwarty

Wyświetlenia strony 57
Wyświetlenia/pobrania artykułu 38
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Stanowisko Sekcji Dietetyki Medycznej POLSPEN dotyczące stosowania postu przerywanego w profilaktyce i leczeniu zaburzeń metabolicznych

Jolanta Dardzińska1, Sylwia Małgorzewicz1, Dariusz Włodarek2, Dorota Szostak-Węgierek3
DOI: 10.5603/pżk.101352
Postępy Żywienia Klinicznego 2024;19:123-132.

Streszczenie

Problem otyłości stale narasta. Wobec braku dostępnych i skutecznych rozwiązań, wielu pacjentów zwraca się ku niestandardowym formom terapii nadmiaru masy ciała. W ostatniej dekadzie znacznie wzrosło zainteresowanie stosowaniem tzw. postów przerywanych (IF, intermittent fasting) jako alternatywy dla ciągłej restrykcji kalorycznej. W pracy dokonano przeglądu piśmiennictwa dotyczącego skuteczności stosowania IF w leczeniu otyłości i towarzyszących jej zaburzeń metabolicznych. Dotychczasowe badania wykazały, że posty przerywane mogą być alternatywą dla klasycznej diety redukcyjnej, jednak nie ma wystarczających dowodów, że jego stosowanie wiąże się z większymi korzyściami zdrowotnymi. Przy podejmowaniu decyzji o stosowaniu tych reżimów dietetycznych należy wziąć pod uwagę ryzyko ewentualnych związanych z nimi zagrożeń.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. WHO EUROPEAN REGIONAL OBESITY REPORT 2022. https://www.who.int/europe/publications/i/item/9789289057738.
  2. Global Burden of Disease. Obesity. https://www.healthdata.org/search?search_api_fulltext=obesity.
  3. de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med. 2019; 381(26): 2541–2551.
  4. Dorling JL, Martin CK, Redman LM. Calorie restriction for enhanced longevity: The role of novel dietary strategies in the present obesogenic environment. Ageing Res Rev. 2020; 64: 101038.
  5. Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011; 14(2): 275–287.
  6. Attinà A, Leggeri C, Paroni R, et al. Fasting: How to Guide. Nutrients. 2021; 13(5).
  7. Dong TA, Sandesara PB, Dhindsa DS, et al. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am J Med. 2020; 133(8): 901–907.
  8. Swindell WR. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev. 2012; 11(2): 254–270.
  9. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010; 328(5976): 321–326.
  10. Patterson RE, Laughlin GA, LaCroix AZ, et al. Intermittent Fasting and Human Metabolic Health. J Acad Nutr Diet. 2015; 115(8): 1203–1212.
  11. Dong TA, Sandesara PB, Dhindsa DS, et al. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am J Med. 2020; 133(8): 901–907.
  12. de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med. 2019; 381(26): 2541–2551.
  13. Walford RL, Mock D, Verdery R, et al. Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci. 2002; 57(6): B211–B224.
  14. Ravussin E, Redman LM, Rochon J, et al. CALERIE Study Group. A 2-Year Randomized Controlled Trial of Human Caloric Restriction: Feasibility and Effects on Predictors of Health Span and Longevity. J Gerontol A Biol Sci Med Sci. 2015; 70(9): 1097–1104.
  15. Dorling JL, van Vliet S, Huffman KM, et al. CALERIE Study Group. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev. 2021; 79(1): 98–113.
  16. Halberg N, Henriksen M, Söderhamn N, et al. Effect of intermittent fasting and refeeding on insulin action in healthy men. J Appl Physiol (1985). 2005; 99(6): 2128–2136.
  17. Gjedsted J, Gormsen LC, Nielsen S, et al. Effects of a 3-day fast on regional lipid and glucose metabolism in human skeletal muscle and adipose tissue. Acta Physiol (Oxf). 2007; 191(3): 205–216.
  18. Donnelly LS, Shaw RL, Pegington M, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond). 2011; 35(5): 714–727.
  19. Klempel MC, Kroeger CM, Bhutani S, et al. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J. 2012; 11: 98.
  20. Klempel MC, Kroeger CM, Varady KA. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metabolism. 2013; 62(1): 137–143.
  21. Patterson RE, Sears DD. Metabolic Effects of Intermittent Fasting. Annu Rev Nutr . 2017; 21(37): 371–393.
  22. Varady KA, Cienfuegos S, Ezpeleta M, et al. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol. 2022; 18(5): 309–321.
  23. Carlson O, Martin B, Stote KS, et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism. 2007; 56(12): 1729–1734.
  24. Stote KS, Baer DJ, Spears K, et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr. 2007; 85(4): 981–988.
  25. Tinsley GM, Forsse JS, Butler NK, et al. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci. 2017; 17(2): 200–207.
  26. Patterson RE, Sears DD. Metabolic Effects of Intermittent Fasting. Annu Rev Nutr. 2017; 21(37): 371–393.
  27. Longo VD, Panda S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016; 23(6): 1048–1059.
  28. Paoli A, Tinsley G, Bianco A, et al. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients. 2019; 11(4).
  29. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012; 35: 445–462.
  30. Unger J, McNeill TH, Moxley RT, et al. Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience. 1989; 31(1): 143–157.
  31. Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006; 494(3): 528–548.
  32. Hâkansson ML, Brown H, Ghilardi N, et al. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci. 1998; 18(1): 559–572.
  33. Gamble KL, Berry R, Frank SJ, et al. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014; 10(8): 466–475.
  34. Stenvers DJ, Scheer FA, Schrauwen P, et al. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019; 15(2): 75–89.
  35. Gibbs M, Harrington D, Starkey S, et al. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin Nutr. 2014; 33(5): 889–894.
  36. Morgan L, Hampton S, Gibbs M, et al. Circadian aspects of postprandial metabolism. Chronobiol Int. 2003; 20(5): 795–808.
  37. Saad A, Dalla Man C, Nandy DK, et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes. 2012; 61(11): 2691–2700.
  38. Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988; 81(2): 442–448.
  39. Romon M, Edme JL, Boulenguez C, et al. Circadian variation of diet-induced thermogenesis. Am J Clin Nutr. 1993; 57(4): 476–480.
  40. Bo S, Fadda M, Castiglione A, et al. Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int J Obes (Lond). 2015; 39(12): 1689–1695.
  41. Fukuda Y, Morita T. Effects of the light-dark cycle on diurnal rhythms of diet-induced thermogenesis in humans. Chronobiol Int. 2017; 34(10): 1465–1472.
  42. Scheer FA, Hilton MF, Mantzoros CS, et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009; 106(11): 4453–4458.
  43. Challet E. Circadian clocks, food intake, and metabolism. Prog Mol Biol Transl Sci. 2013; 119: 105–135.
  44. Harvie MN, Howell T. Could Intermittent Energy Restriction and Intermittent Fasting Reduce Rates of Cancer in Obese, Overweight, and Normal-Weight Subjects? A Summary of Evidence. Adv Nutr. 2016; 7(4): 690–705.
  45. Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med. 2012; 18(1): 1249–1260.
  46. Stevens RG, Blask DE, Brainard GC, et al. Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect. 2007; 115(9): 1357–1362.
  47. Stevens RG, Rea MS. Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Cancer Causes Control. 2001; 12(3): 279–287.
  48. Straif K, Baan R, Grosse Y, et al. WHO International Agency For Research on Cancer Monograph Working Group. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007; 8(12): 1065–1066.
  49. Arble DM, Bass J, Behn CD, et al. Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions. Sleep. 2015; 38(12): 1849–1860.
  50. Roky R, Houti I, Moussamih S, et al. Physiological and chronobiological changes during Ramadan intermittent fasting. Ann Nutr Metab. 2004; 48(4): 296–303.
  51. Boukhris O, Hill DW, Ammar A, et al. Longer Nap Duration During Ramadan Observance Positively Impacts 5-m Shuttle Run Test Performance Performed in the Afternoon. Front Physiol. 2022; 13: 811435.
  52. Chowdhury EA, Richardson JD, Holman GD, et al. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults. Am J Clin Nutr. 2016; 103(3): 747–756.
  53. Chowdhury EA, Richardson JD, Tsintzas K, et al. Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults. Int J Obes (Lond). 2016; 40(2): 305–311.
  54. Liśkiewicz A, Jędrzejewska-Szypułka H, Lewin-Kowalik J. Characteristics of ketogenic diet and its therapeutic properties in central nervous system disorders. Ann. Acad. Med. Siles. 2012; 66(6): 66–76.
  55. Steinhauser ML, Olenchock BA, O'Keefe J, et al. The circulating metabolome of human starvation. JCI Insight. 2018; 3(16).
  56. Sanvictores T, Casale J, Huecker MR. Physiology, Fasting. StatPearls Publishing 2023: https://www.ncbi.nlm.nih.gov/books/NBK534877/.
  57. Paoli A, Bianco A, Damiani E, et al. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014; 2014: 474296.
  58. Włodarek D, Włodarek D, Włodarek D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease). Nutrients. 2019; 11(1): 385–391.
  59. Krebs HA. The regulation of the release of ketone bodies by the liver. Adv Enzyme Regul. 1966; 4: 339–354.
  60. McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol. 2010; 156(1): 1–18.
  61. Harris L, Hamilton S, Azevedo LB, et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep. 2018; 16(2): 507–547.
  62. Allaf M, Elghazaly H, Mohamed OG, et al. Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev. 2021; 1(1): CD013496.
  63. Welton S, Minty R, O'Driscoll T, et al. Intermittent fasting and weight loss: Systematic review. Can Fam Physician. 2020; 66(2): 117–125.
  64. Morales-Suarez-Varela M, Collado Sánchez E, Peraita-Costa I, et al. Intermittent Fasting and the Possible Benefits in Obesity, Diabetes, and Multiple Sclerosis: A Systematic Review of Randomized Clinical Trials. Nutrients. 2021; 13(9).
  65. He S, Wang J, Zhang J, et al. Intermittent Versus Continuous Energy Restriction for Weight Loss and Metabolic Improvement: A Meta-Analysis and Systematic Review. Obesity (Silver Spring). 2021; 29(1): 108–115.
  66. Varady KA, Cienfuegos S, Ezpeleta M, et al. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol. 2022; 18(5): 309–321.
  67. Wang J, Wang F, Chen H, et al. Comparison of the Effects of Intermittent Energy Restriction and Continuous Energy Restriction among Adults with Overweight or Obesity: An Overview of Systematic Reviews and Meta-Analyses. Nutrients. 2022; 14(11).
  68. Ezzati A, Rosenkranz SK, Phelan J, et al. The Effects of Isocaloric Intermittent Fasting vs Daily Caloric Restriction on Weight Loss and Metabolic Risk Factors for Noncommunicable Chronic Diseases: A Systematic Review of Randomized Controlled or Comparative Trials. J Acad Nutr Diet. 2023; 123(2): 318–329.e1.
  69. Wei X, Lin B, Huang Y, et al. Calorie Restriction with or without Time-Restricted Eating in Weight Loss. N Engl J Med. 2022; 386(16): 1495–1504.
  70. Headland ML, Clifton PM, Keogh JB. Effect of intermittent compared to continuous energy restriction on weight loss and weight maintenance after 12 months in healthy overweight or obese adults. Int J Obes (Lond). 2019; 43(10): 2028–2036.
  71. He S, Wang J, Zhang J, et al. Intermittent Versus Continuous Energy Restriction for Weight Loss and Metabolic Improvement: A Meta-Analysis and Systematic Review. Obesity (Silver Spring). 2021; 29(1): 108–115.
  72. Coutinho SR, Halset EH, Gåsbakk S, et al. Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial. Clin Nutr. 2018; 37(3): 815–823.
  73. Hall KD, Guo J. Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition. Gastroenterology. 2017; 152(7): 1718–1727.e3.
  74. Jensen MD, Ryan DH, Apovian CM, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines, Obesity Society. Reprint: 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. J Am Pharm Assoc (2003). 2013 [Epub ahead of print]; 129(25 Suppl 2): e3–S138.
  75. Silverii GA, Cresci B, Benvenuti F, et al. Effectiveness of intermittent fasting for weight loss in individuals with obesity: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2023; 33(8): 1481–1489.
  76. Schroor MM, Joris PJ, Plat J, et al. Effects of Intermittent Energy Restriction Compared with Those of Continuous Energy Restriction on Body Composition and Cardiometabolic Risk Markers - A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Adults. Adv Nutr. 2024; 15(1): 100130.
  77. Ma Y, Sun L, Mu Z. Network meta-analysis of three different forms of intermittent energy restrictions for overweight or obese adults. Int J Obes (Lond). 2024; 48(1): 55–64.
  78. Harvie M, Wright C, Pegington M, et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 2013; 110(8): 1534–1547.
  79. Sutton EF, Beyl R, Early KS, et al. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018; 27(6): 1212–1221.e3.
  80. Anton SD, Moehl K, Donahoo WT, et al. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring). 2018; 26(2): 254–268.
  81. Vasim I, Majeed CN, DeBoer MD. Intermittent Fasting and Metabolic Health. Nutrients. 2022; 14(3).
  82. Lowe DA, Wu N, Rohdin-Bibby L, et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern Med. 2020; 180(11): 1491–1499.
  83. Furmli S, Elmasry R, Ramos M, et al. Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Reports. 2018; 2018: bcr-2017-221854.
  84. Alghamdi AS, Alghamdi KA, Jenkins RO, et al. Impact of Ramadan on Physical Activity and Sleeping Patterns in Individuals with Type 2 Diabetes: The First Study Using Fitbit Device. Diabetes Ther. 2020; 11(6): 1331–1346.
  85. Obermayer A, Tripolt NJ, Pferschy PN, et al. Efficacy and Safety of Intermittent Fasting in People With Insulin-Treated Type 2 Diabetes (INTERFAST-2)-A Randomized Controlled Trial. Diabetes Care. 2023; 46(2): 463–468.
  86. Yuan X, Wang J, Yang S, et al. Effect of Intermittent Fasting Diet on Glucose and Lipid Metabolism and Insulin Resistance in Patients with Impaired Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Int J Endocrinol. 2022; 2022: 6999907.
  87. Pureza IR, Macena Md, da Silva Junior AE, et al. Effect of early time-restricted feeding on the metabolic profile of adults with excess weight: A systematic review with meta-analysis. Clin Nutr. 2021; 40(4): 1788–1799.
  88. Crupi AN, Haase J, Brandhorst S, et al. Periodic and Intermittent Fasting in Diabetes and Cardiovascular Disease. Curr Diab Rep. 2020; 20(12): 83.
  89. Erdem Y, Özkan G, Ulusoy Ş, et al. Turkish Society of Hypertension and Renal Diseases. The effect of intermittent fasting on blood pressure variability in patients with newly diagnosed hypertension or prehypertension. J Am Soc Hypertens. 2018; 12(1): 42–49.
  90. Wilhelmi de Toledo F, Grundler F, Bergouignan A, et al. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS One. 2019; 14(1): e0209353.
  91. Eshghinia S, Mohammadzadeh F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J Diabetes Metab Disord. 2013; 12(1): 4.
  92. Teng NI, Shahar S, Rajab NF, et al. Improvement of metabolic parameters in healthy older adult men following a fasting calorie restriction intervention. Aging Male. 2013; 16(4): 177–183.
  93. Bhutani S, Klempel MC, Kroeger CM, et al. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity (Silver Spring). 2013; 21(7): 1370–1379.
  94. Malinowski B, Zalewska K, Węsierska A, et al. Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients. 2019; 11(3).
  95. Liu Bo, Hutchison AT, Thompson CH, et al. Markers of adipose tissue inflammation are transiently elevated during intermittent fasting in women who are overweight or obese. Obes Res Clin Pract. 2019; 13(4): 408–415.
  96. Castela I, Rodrigues C, Ismael S, et al. Intermittent energy restriction ameliorates adipose tissue-associated inflammation in adults with obesity: A randomised controlled trial. Clin Nutr. 2022; 41(8): 1660–1666.
  97. Wang X, Yang Q, Liao Q, et al. Effects of intermittent fasting diets on plasma concentrations of inflammatory biomarkers: A systematic review and meta-analysis of randomized controlled trials. Nutrition. 2020; 79-80: 110974.
  98. Lavallee CM, Bruno A, Ma C, et al. The Role of Intermittent Fasting in the Management of Nonalcoholic Fatty Liver Disease: A Narrative Review. Nutrients. 2022; 14(21).
  99. Choi JH, Cho YJ, Kim HJ, et al. Committee of Clinical Practice Guidelines, Korean Society for the Study of Obesity (KSSO), Committee of Clinical Practice Guidelines and Committee of Food and Nutrition, Korean Diabetes Association (KDA), Policy Committee of Korean Society of Hypertension (KSH), Policy Development Committee of National Academy of Medicine of Korea (NAMOK). Effect of Carbohydrate-Restricted Diets and Intermittent Fasting on Obesity, Type 2 Diabetes Mellitus, and Hypertension Management: Consensus Statement of the Korean Society for the Study of Obesity, Korean Diabetes Association, and Korean Society of Hypertension. Diabetes Metab J. 2022; 46(3): 355–376.