Tom 18, Nr 2 (2022)
Wytyczne / stanowisko ekspertów
Opublikowany online: 2022-07-02
Pobierz cytowanie

Leczenie zaawansowanej choroby Parkinsona — rekomendacje Polskiego Towarzystwa Choroby Parkinsona i Innych Zaburzeń Ruchowych

Andrzej Bogucki1, Sławomir Budrewicz2, Agata Gajos1, Dariusz Koziorowski3, Monika Rudzińska-Bar4, Jarosław Sławek56
·
Pol. Przegl. Neurol 2022;18(2):61-84.
Afiliacje
  1. Klinika Chorób Układu Pozapiramidowego, Uniwersytet Medyczny w Łodzi, Polska
  2. Katedra i Klinika Neurologii, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu, Polska
  3. Klinika Neurologii, Warszawski Uniwersytet Medyczny, Polska
  4. Katedra i Klinika Neurologii, Wydział Lekarski i Nauk o Zdrowiu, Krakowska Akademia im. Andrzeja Frycza Modrzewskiego, Polska
  5. Zakład Pielęgniarstwa Neurologiczno-Psychiatrycznego, Wydziału Nauk o Zdrowiu, Gdański Uniwersytet Medyczny, Polska
  6. Oddział Neurologii, Szpital św. Wojciecha, Podmiot Leczniczy Copernicus sp. z o.o., Gdańsk, Polska

dostęp płatny

Tom 18, Nr 2 (2022)
Rekomendacje i zalecenia ekspertów
Opublikowany online: 2022-07-02

Streszczenie

W leczeniu zaawansowanej choroby Parkinsona (PD, Parkinson’s disease) stosuje się głęboką stymulację mózgu oraz dwie terapie infuzyjne wykorzystujące stałe podawanie leku przez pompę — podskórne wlewy apomorfiny i dojelitowe wlewy lewodopy. Rekomendacje dotyczą zasad stosowania tych terapii i powstały na podstawie wyników badań kontrolowanych, metaanaliz i przeglądów systematycznych oraz ustaleń grup ekspertów. Zaawansowaną PD najlepiej definiuje obecność fluktuacji (stany on i off), dyskinez pląsawiczych szczytu dawki oraz liczba przyjmowanych dawek lewodopy. Warunkiem zastosowania głębokiej stymulacji mózgu lub jednej z terapii infuzyjnych jest nieefektywność, u pacjenta z co najmniej 5-letnim czasem t rwania choroby, leczenia prowadzonego co najmniej 3 lekami lub nieskuteczność monoterapii pr zy udokumentowanej nietolerancji innych leków. Pacjent powinien otrzymywać co najmniej 5 dawek lewodopy dziennie. Kandydatem do terapii może być pacjent, u którego występują stany off o łącznym czasie tr wania co najmniej 2 h, przy obecności uciążliwych dyskinez szczytu dawki tr wających nie krócej niż przez 1 h w ciągu doby. Zachowana musi być dobra odpowiedź na lewodopę (różnica wyniku w III cz. MDS UPDRS między stanami off i on ≥ 33%). W rekomendacjach pr zedstawiono profile pacjentów będących najlepszymi kandydatami do poszczególnych terapii, uwzględniające przede wszystkim przeciwwskazania do każdej z tych interwencji. Jeżeli stan pacjenta pozwala zakwalifikować go do więcej niż jednej z trzech omawianych terapii, to — podejmując decyzję — należy uwzględnić preferencje pacjenta. Leczenie z zastosowaniem głębokiej stymulacji mózgu i terapii infuzyjnych powinno być prowadzone w specjalistycznych ośrodkach referencyjnych dla pacjentów z PD.

Streszczenie

W leczeniu zaawansowanej choroby Parkinsona (PD, Parkinson’s disease) stosuje się głęboką stymulację mózgu oraz dwie terapie infuzyjne wykorzystujące stałe podawanie leku przez pompę — podskórne wlewy apomorfiny i dojelitowe wlewy lewodopy. Rekomendacje dotyczą zasad stosowania tych terapii i powstały na podstawie wyników badań kontrolowanych, metaanaliz i przeglądów systematycznych oraz ustaleń grup ekspertów. Zaawansowaną PD najlepiej definiuje obecność fluktuacji (stany on i off), dyskinez pląsawiczych szczytu dawki oraz liczba przyjmowanych dawek lewodopy. Warunkiem zastosowania głębokiej stymulacji mózgu lub jednej z terapii infuzyjnych jest nieefektywność, u pacjenta z co najmniej 5-letnim czasem t rwania choroby, leczenia prowadzonego co najmniej 3 lekami lub nieskuteczność monoterapii pr zy udokumentowanej nietolerancji innych leków. Pacjent powinien otrzymywać co najmniej 5 dawek lewodopy dziennie. Kandydatem do terapii może być pacjent, u którego występują stany off o łącznym czasie tr wania co najmniej 2 h, przy obecności uciążliwych dyskinez szczytu dawki tr wających nie krócej niż przez 1 h w ciągu doby. Zachowana musi być dobra odpowiedź na lewodopę (różnica wyniku w III cz. MDS UPDRS między stanami off i on ≥ 33%). W rekomendacjach pr zedstawiono profile pacjentów będących najlepszymi kandydatami do poszczególnych terapii, uwzględniające przede wszystkim przeciwwskazania do każdej z tych interwencji. Jeżeli stan pacjenta pozwala zakwalifikować go do więcej niż jednej z trzech omawianych terapii, to — podejmując decyzję — należy uwzględnić preferencje pacjenta. Leczenie z zastosowaniem głębokiej stymulacji mózgu i terapii infuzyjnych powinno być prowadzone w specjalistycznych ośrodkach referencyjnych dla pacjentów z PD.

Pobierz cytowanie

Słowa kluczowe

zaawansowana choroba Parkinsona, głęboka stymulacja mózgu, podskórne wlewy apomorfiny, dojelitowe wlewy lewodopy

Informacje o artykule
Tytuł

Leczenie zaawansowanej choroby Parkinsona — rekomendacje Polskiego Towarzystwa Choroby Parkinsona i Innych Zaburzeń Ruchowych

Czasopismo

Polski Przegląd Neurologiczny

Numer

Tom 18, Nr 2 (2022)

Typ artykułu

Wytyczne / stanowisko ekspertów

Strony

61-84

Opublikowany online

2022-07-02

Wyświetlenia strony

2003

Wyświetlenia/pobrania artykułu

507

DOI

10.5603/PPN.2022.0017

Rekord bibliograficzny

Pol. Przegl. Neurol 2022;18(2):61-84.

Słowa kluczowe

zaawansowana choroba Parkinsona
głęboka stymulacja mózgu
podskórne wlewy apomorfiny
dojelitowe wlewy lewodopy

Autorzy

Andrzej Bogucki
Sławomir Budrewicz
Agata Gajos
Dariusz Koziorowski
Monika Rudzińska-Bar
Jarosław Sławek

Referencje (148)
  1. Bogucki A, Sławek J, Boczarska-Jedynak M, et al. Leczenie zaawansowanej choroby Parkinsona — rekomendacje skiego Towarzystwa Choroby Parkinsona i Innych Zaburzeń Ruchowych. Pol Przegl Neurol. 2014; 10: 15–22.
  2. Selikhova M, Williams DR, Kempster PA, et al. A clinico-pathological study of subtypes in Parkinson's disease. Brain. 2009; 132(Pt 11): 2947–2957.
  3. Sauerbier A, Jenner P, Todorova A, et al. Non motor subtypes and Parkinson's disease. Parkinsonism Relat Disord. 2016; 22(Suppl 1): S41–S46.
  4. Sławek J. Zaawansowana choroba Parkinsona — jak poprawić jej rozpoznawalność i właściwie kwalifikować chorych do terapii zaawansowanych? Pol Przegl Neurol. 2020; 16(3): 161–171.
  5. Krüger R, Klucken J, Weiss D, et al. Classification of advanced stages of Parkinson's disease: translation into stratified treatments. J Neural Transm (Vienna). 2017; 124(8): 1015–1027.
  6. Titova N, Martinez-Martin P, Katunina E, et al. Advanced Parkinson's or "complex phase" Parkinson's disease? Re-evaluation is needed. J Neural Transm (Vienna). 2017; 124(12): 1529–1537.
  7. Fahn S, Oakes D, Shoulson I, et al. Parkinson Study Group. Levodopa and the progression of Parkinson's disease. N Engl J Med. 2004; 351(24): 2498–2508.
  8. Odin P, Ray Chaudhuri K, Slevin JT, et al. National Steering Committees. Collective physician perspectives on non-oral medication approaches for the management of clinically relevant unresolved issues in Parkinson's disease: Consensus from an international survey and discussion program. Parkinsonism Relat Disord. 2015; 21(10): 1133–1144.
  9. Antonini A, Stoessl AJ, Kleinman LS, et al. Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson's disease: a multi-country Delphi-panel approach. Curr Med Res Opin. 2018; 34(12): 2063–2073.
  10. Politis M, Wu K, Molloy S, et al. Parkinson's disease symptoms: the patient's perspective. Mov Disord. 2010; 25(11): 1646–1651.
  11. Chou KL, Stacy M, Simuni T, et al. The spectrum of "off" in Parkinson's disease: What have we learned over 40 years? Parkinsonism Relat Disord. 2018; 51: 9–16.
  12. Pycroft L, Stein J, Aziz T. Deep brain stimulation: an overview of history, methods, and future developments. Brain Neurosci Adv. 2018; 2: 2398212818816017.
  13. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med. 2001; 345(13): 956–963.
  14. Kleiner-Fisman G, Herzog J, Fisman DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006; 21 Suppl 14: S290–S304.
  15. Voon V, Krack P, Lang AE, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease. Brain. 2008; 131(Pt 10): 2720–2728.
  16. Weintraub D, Duda JE, Carlson K, et al. CSP 468 Study Group. Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson's disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2013; 84(10): 1113–1118.
  17. Weaver FM, Follett K, Stern M, et al. CSP 468 Study Group. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009; 301(1): 63–73.
  18. Lhommée E, Klinger H, Thobois S, et al. Subthalamic stimulation in Parkinson's disease: restoring the balance of motivated behaviours. Brain. 2012; 135(Pt 5): 1463–1477.
  19. Moro E, Lozano AM, Pollak P, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov Disord. 2010; 25(5): 578–586.
  20. Xie CL, Shao B, Chen J, et al. Effects of neurostimulation for advanced Parkinson's disease patients on motor symptoms: A multiple-treatments meta-analysas of randomized controlled trials. Sci Rep. 2016; 6: 25285.
  21. Zhang J, Li J, Chen F, et al. STN versus GPi deep brain stimulation for dyskinesia improvement in advanced Parkinson's disease: A meta-analysis of randomized controlled trials. Clin Neurol Neurosurg. 2021; 201: 106450.
  22. Lhommée E, Wojtecki L, Czernecki V, et al. EARLYSTIM study group. Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson's disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol. 2018; 17(3): 223–231.
  23. Liu Yi, Li W, Tan C, et al. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J Neurosurg. 2014; 121(3): 709–718.
  24. Hariz MI, Krack P, Alesch F, et al. Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up. J Neurol Neurosurg Psychiatry. 2008; 79(6): 694–699.
  25. Zrinzo L, Foltynie T, Limousin P, et al. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2012; 116(1): 84–94.
  26. Grill WM. Safety considerations for deep brain stimulation: review and analysis. Expert Rev Med Devices. 2005; 2(4): 409–420.
  27. Defer GL, Widner H, Marié RM, et al. Core assessment program for surgical interventional therapies in Parkinson's disease (CAPSIT-PD). Mov Disord. 1999; 14(4): 572–584, doi: 10.1002/1531-8257(199907)14:4<572::aid-mds1005>3.0.co;2-c.
  28. Schuepbach WMM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med. 2013; 368(7): 610–622.
  29. Cabrera LY, Goudreau J, Sidiropoulos C. Critical appraisal of the recent US FDA approval for earlier DBS intervention. Neurology. 2018; 91(3): 133–136.
  30. Schüpbach WM, Rau J, Houeto JL, et al. Myths and facts about the EARLYSTIM study. Mov Disord. 2014; 29(14): 1742–1750.
  31. Bakker M, Esselink RAJ, Munneke M, et al. Effects of stereotactic neurosurgery on postural instability and gait in Parkinson's disease. Mov Disord. 2004; 19(9): 1092–1099.
  32. Rizzone MG, Fasano A, Daniele A, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson's disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord. 2014; 20(4): 376–381.
  33. Fasano A, Romito LM, Daniele A, et al. Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic implants. Brain. 2010; 133(9): 2664–2676.
  34. Volkmann J, Albanese A, Antonini A, et al. Selecting deep brain stimulation or infusion therapies in advanced Parkinson's disease: an evidence-based review. J Neurol. 2013; 260(11): 2701–2714.
  35. Tripoliti E, Limousin P, Foltynie T, et al. Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson's disease. Mov Disord. 2014; 29(4): 532–538.
  36. Cloud LJ, Greene JG. Gastrointestinal features of Parkinson's disease. Curr Neurol Neurosci Rep. 2011; 11(4): 379–384.
  37. Chaudhuri KR, Schapira AHV. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009; 8(5): 464–474.
  38. Nyholm D, Askmark H, Gomes-Trolin C, et al. Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol. 2003; 26(3): 156–163.
  39. Metta V, Batzu L, Leta V, et al. Parkinson's disease: personalized pathway of care for device-aided therapies (DAT) and the role of continuous objective monitoring (COM) using wearable sensors. J Pers Med. 2021; 11(7).
  40. Kurth MC, Tetrud JW, Tanner CM, et al. Double-blind, placebo-controlled, crossover study of duodenal infusion of levodopa/carbidopa in Parkinson's disease patients with 'on-off' fluctuations. Neurology. 1993; 43(9): 1698–1703.
  41. Nyholm D, Nilsson Remahl AIM, Dizdar N, et al. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology. 2005; 64(2): 216–223.
  42. Olanow CW, Kieburtz K, Odin P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson's disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014; 13(2): 141–149.
  43. Munro Neville A, Parsons RW, Askmark H, et al. Treatment of advanced Parkinson's disease with levodopa/carbidopa intestinal gel is associated with improvements in Hoehn and Yahr stage. Parkinsonism Relat Disord. 2012; 18(5): 686–687.
  44. Nijhuis FAP, Esselink R, de Bie RMA, et al. Translating evidence to advanced Parkinson's disease patients: a systematic review and meta-analysis. Mov Disord. 2021; 36(6): 1293–1307.
  45. Tsunemi T, Oyama G, Saiki S, et al. Intrajejunal infusion of levodopa/carbidopa for advanced Parkinson's disease: a systematic review. Mov Disord. 2021; 36(8): 1759–1771.
  46. Antonini A, Poewe W, Chaudhuri KR, et al. GLORIA study co-investigators. Levodopa-carbidopa intestinal gel in advanced Parkinson's: final results of the GLORIA registry. Parkinsonism Relat Disord. 2017; 45: 13–20.
  47. Bohlega S, Abou Al-Shaar H, Alkhairallah T, et al. Levodopa-carbidopa intestinal gel infusion therapy in advanced Parkinson's disease: single Middle Eastern center experience. Eur Neurol. 2015; 74(5-6): 227–236.
  48. De Fabregues O, Dot J, Abu-Suboh M, et al. Long-term safety and effectiveness of levodopa-carbidopa intestinal gel infusion. Brain Behav. 2017; 7(8): e00758.
  49. Fernandez HH, Boyd JT, Fung VSC, et al. Long-term safety and efficacy of levodopa-carbidopa intestinal gel in advanced Parkinson's disease. Mov Disord. 2018; 33(6): 928–936.
  50. Juhász A, Aschermann Z, Ács P, et al. Levodopa/carbidopa intestinal gel can improve both motor and non-motor experiences of daily living in Parkinson's disease: An open-label study. Parkinsonism Relat Disord. 2017; 37: 79–86.
  51. Lopiano L, Modugno N, Marano P, et al. Motor and non-motor outcomes in patients with advanced Parkinson's disease treated with levodopa/carbidopa intestinal gel: final results of the GREENFIELD observational study. J Neurol. 2019; 266(9): 2164–2176.
  52. Murata M, Mihara M, Hasegawa K, et al. Safety and efficacy of levodopa-carbidopa intestinal gel: results from an open-label extension study in Japanese, Korean and Taiwanese patients with advanced Parkinson's disease. Ther Adv Neurol Disord. 2018; 11: 1756286418759315.
  53. Ray Chaudhuri K, Antonini A, Robieson WZ, et al. GLORIA study co-investigators. Burden of non-motor symptoms in Parkinson's disease patients predicts improvement in quality of life during treatment with levodopa-carbidopa intestinal gel. Eur J Neurol. 2019; 26(4): 581–e43.
  54. Lang AE, Rodriguez RL, Boyd JT, et al. Integrated safety of levodopa-carbidopa intestinal gel from prospective clinical trials. Mov Disord. 2016; 31(4): 538–546.
  55. Jugel C, Ehlen F, Taskin B, et al. Neuropathy in Parkinson's disease patients with intestinal levodopa infusion versus oral drugs. PLoS One. 2013; 8(6): e66639.
  56. Merola A, Romagnolo A, Zibetti M, et al. Peripheral neuropathy associated with levodopa-carbidopa intestinal infusion: a long-term prospective assessment. Eur J Neurol. 2016; 23(3): 501–509.
  57. Cruse B, Morales-Briceño H, Chang FCF, et al. 24-hour levodopa-carbidopa intestinal gel may reduce troublesome dyskinesia in advanced Parkinson's disease. NPJ Parkinsons Dis. 2018; 4: 34.
  58. Chang FCF, Tsui DS, Mahant N, et al. 24 h Levodopa-carbidopa intestinal gel may reduce falls and "unresponsive" freezing of gait in Parkinson's disease. Parkinsonism Relat Disord. 2015; 21(3): 317–320.
  59. Ricciardi L, Bove F, Espay KJ, et al. 24-Hour infusion of levodopa/carbidopa intestinal gel for nocturnal akinesia in advanced Parkinson's disease. Mov Disord. 2016; 31(4): 597–598.
  60. Morales-Briceño H, Mahant N, Ha AD, et al. Long-term safety and efficacy of 24-hour levodopa-carbidopa intestinal gel in Parkinson's disease. Mov Disord. 2019; 34(11): 1747–1748.
  61. Nyholm D, Adnan M, Senek M. Real-life use of levodopa/carbidopa intestinal gel in Parkinson's disease according to analysis of pump data. J Parkinsons Dis. 2020; 10(4): 1529–1534.
  62. Thakkar S, Fung VSC, Merola A, et al. 24-hour levodopa-carbidopa intestinal gel: clinical experience and practical recommendations. CNS Drugs. 2021; 35(2): 137–149.
  63. Nyholm D, Johansson A, Lennernäs H, et al. Levodopa infusion combined with entacapone or tolcapone in Parkinson disease: a pilot trial. Eur J Neurol. 2012; 19(6): 820–826.
  64. Senek M, Nielsen EI, Nyholm D. Levodopa-entacapone-carbidopa intestinal gel in Parkinson's disease: a randomized crossover study. Mov Disord. 2017; 32(2): 283–286.
  65. Dewey RB, Hutton JT, LeWitt PA, et al. A randomized, double-blind, placebo-controlled trial of subcutaneously injected apomorphine for parkinsonian off-state events. Arch Neurol. 2001; 58(9): 1385–1392.
  66. Pahwa R, Koller WC, Trosch RM, et al. APO303 Study Investigators. Subcutaneous apomorphine in patients with advanced Parkinson's disease: a dose-escalation study with randomized, double-blind, placebo-controlled crossover evaluation of a single dose. J Neurol Sci. 2007; 258(1-2): 137–143.
  67. Gunzler SA, Koudelka C, Carlson NE, et al. Effect of low concentrations of apomorphine on parkinsonism in a randomized, placebo-controlled, crossover study. Arch Neurol. 2008; 65(2): 193–198.
  68. Trenkwalder C, Chaudhuri KR, García Ruiz PJ, et al. Expert Consensus Group for Use of Apomorphine in Parkinson's Disease. Expert Consensus Group report on the use of apomorphine in the treatment of Parkinson's disease--Clinical practice recommendations. Parkinsonism Relat Disord. 2015; 21(9): 1023–1030.
  69. Hagell P, Odin P. Apomorphine in Parkinson’s disease. 3rd ed. UNI-MED, Bremen 2014.
  70. Martinez-Martin P, Reddy P, Antonini A, et al. Chronic subcutaneous infusion therapy with apomorphine in advanced Parkinson's disease compared to conventional therapy: a real life study of non motor effect. J Parkinsons Dis. 2011; 1(2): 197–203.
  71. Clinical review report: apomorphine (Movapo). (Paladin Labs Inc.): Indication: The acute, intermittent treatment of hypomobility “off” episodes (“end-of-dose wearing off” and unpredictable “on/off” episodes) in patients with advanced Parkinson’s disease [Internet]. Canadian Agency for Drugs and Technologies in Health, Ottawa 2018.
  72. García Ruiz PJ, Sesar Ignacio A, Ares Pensado B, et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson's disease with motor fluctuations: a multicenter study. Mov Disord. 2008; 23(8): 1130–1136.
  73. Borgemeester RWK, van Laar T. Continuous subcutaneous apomorphine infusion in Parkinson's disease patients with cognitive dysfunction: A retrospective long-term follow-up study. Parkinsonism Relat Disord. 2017; 45: 33–38.
  74. Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson's disease: a prospective study using single-dose challenges. Mov Disord. 2005; 20(2): 151–157.
  75. Katzenschlager R, Poewe W, Rascol O, et al. Apomorphine subcutaneous infusion in patients with Parkinson's disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018; 17(9): 749–759.
  76. Katzenschlager R, Poewe W, Rascol O, et al. Long-term safety and efficacy of apomorphine infusion in Parkinson's disease patients with persistent motor fluctuations: Results of the open-label phase of the TOLEDO study. Parkinsonism Relat Disord. 2021; 83: 79–85.
  77. Sesar Á, Fernández-Pajarín G, Ares B, et al. Continuous subcutaneous apomorphine in advanced Parkinson’s disease patients treated with deep brain stimulation. J Neurol. 2019; 266(3): 659–666.
  78. Kimber TE, Fang J, Huddy LJ, et al. Long-term adherence to apomorphine infusion in patients with Parkinson disease: a 10-year observational study. Intern Med J. 2017; 47(5): 570–573.
  79. Krüger R, Hilker R, Winkler C, et al. Advanced stages of PD: interventional therapies and related patient-centered care. J Neural Transm (Vienna). 2016; 123(1): 31–43.
  80. Parsons TD, Rogers SA, Braaten AJ, et al. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson's disease: a meta-analysis. Lancet Neurol. 2006; 5(7): 578–588.
  81. Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol. 2008; 7(7): 605–614.
  82. Appleby BS, Duggan PS, Regenberg A, et al. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years' experience. Mov Disord. 2007; 22(12): 1722–1728.
  83. Williams A, Gill S, Varma T, et al. PD SURG Collaborative Group. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 2010; 9(6): 581–591.
  84. Pillon B, Ardouin C, Damier P, et al. Neuropsychological changes between "off" and "on" STN or GPi stimulation in Parkinson's disease. Neurology. 2000; 55(3): 411–418.
  85. Funkiewiez A, Ardouin C, Caputo E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2004; 75(6): 834–839.
  86. Castelli L, Perozzo P, Zibetti M, et al. Chronic deep brain stimulation of the subthalamic nucleus for Parkinson's disease: effects on cognition, mood, anxiety and personality traits. Eur Neurol. 2006; 55(3): 136–144.
  87. Rizzone MG, Fasano A, Daniele A, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson's disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord. 2014; 20(4): 376–381.
  88. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J M. 2006; 355(9): 896–908.
  89. Weaver FM, Follett K, Stern M, et al. CSP 468 Study Group. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009; 301(1): 63–73.
  90. Kaiser I, Kryspin-Exner I, Brücke T, et al. Long-term effects of STN DBS on mood: psychosocial profiles remain stable in a 3-year follow-up. BMC Neurol. 2008; 8: 43.
  91. McDonald LM, Page D, Wilkinson L, et al. Deep brain stimulation of the subthalamic nucleus improves sense of well-being in Parkinson's disease. Mov Disord. 2012; 27(3): 372–378.
  92. Lhommée E, Klinger H, Thobois S, et al. Subthalamic stimulation in Parkinson's disease: restoring the balance of motivated behaviours. Brain. 2012; 135(Pt 5): 1463–1477.
  93. Ardouin C, Voon V, Worbe Y, et al. Pathological gambling in Parkinson's disease improves on chronic subthalamic nucleus stimulation. Mov Disord. 2006; 21(11): 1941–1946.
  94. Shotbolt P, Moriarty J, Costello A, et al. Relationships between deep brain stimulation and impulse control disorders in Parkinson's disease, with a literature review. Parkinsonism Relat Disord. 2012; 18(1): 10–16.
  95. Thobois S, Ardouin C, Lhommée E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain. 2010; 133(Pt 4): 1111–1127.
  96. Iranzo A, Valldeoriola F, Santamaría J, et al. Sleep symptoms and polysomnographic architecture in advanced Parkinson's disease after chronic bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002; 72(5): 661–664.
  97. Hjort N, Østergaard K, Dupont E. Improvement of sleep quality in patients with advanced Parkinson's disease treated with deep brain stimulation of the subthalamic nucleus. Mov Disord. 2004; 19(2): 196–199.
  98. Loher TJ, Burgunder JM, Weber S, et al. Effect of chronic pallidal deep brain stimulation on off period dystonia and sensory symptoms in advanced Parkinson's disease. J Neurol Neurosurg Psychiatry. 2002; 73(4): 395–399.
  99. Dafsari HS, Reddy P, Herchenbach C, et al. IPMDS Non-Motor Symptoms Study Group. Beneficial effects of bilateral subthalamic stimulation on non-motor symptoms in Parkinson's disease. Brain Stimul. 2016; 9(1): 78–85.
  100. Cury RG, Galhardoni R, Fonoff ET, et al. Effects of deep brain stimulation on pain and other nonmotor symptoms in Parkinson disease. Neurology. 2014; 83(16): 1403–1409.
  101. Seif C, Herzog J, van der Horst C, et al. Effect of subthalamic deep brain stimulation on the function of the urinary bladder. Ann Neurol. 2004; 55(1): 118–120.
  102. Arai E, Arai M, Uchiyama T, et al. Subthalamic deep brain stimulation can improve gastric emptying in Parkinson's disease. Brain. 2012; 135(Pt 5): 1478–1485.
  103. Zibetti M, Torre E, Cinquepalmi A, et al. Motor and nonmotor symptom follow-up in parkinsonian patients after deep brain stimulation of the subthalamic nucleus. Eur Neurol. 2007; 58(4): 218–223.
  104. Troche MS, Brandimore AE, Foote KD, et al. Swallowing and deep brain stimulation in Parkinson's disease: a systematic review. Parkinsonism Relat Disord. 2013; 19(9): 783–788.
  105. Derrey S, Chastan N, Maltete D, et al. Impact of deep brain stimulation on pharyngo-esophageal motility: a randomized cross-over study. Neurogastroenterol Motil. 2015; 27(9): 1214–1222.
  106. Stemper B, Beric A, Welsch G, et al. Deep brain stimulation improves orthostatic regulation of patients with Parkinson disease. Neurology. 2006; 67(10): 1781–1785.
  107. Trachani E, Constantoyannis C, Sirrou V, et al. Effects of subthalamic nucleus deep brain stimulation on sweating function in Parkinson's disease. Clin Neurol Neurosurg. 2010; 112(3): 213–217.
  108. Sumi K, Katayama Y, Otaka T, et al. Effect of subthalamic nucleus deep brain stimulation on the autonomic nervous system in Parkinson's disease patients assessed by spectral analyses of R-R interval variability and blood pressure variability. Stereotact Funct Neurosurg. 2012; 90(4): 248–254.
  109. Wolz M, Hauschild J, Koy J, et al. Immediate effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms in Parkinson's disease. Parkinsonism Relat Disord. 2012; 18(8): 994–997.
  110. Strowd RE, Cartwright MS, Passmore LV, et al. Weight change following deep brain stimulation for movement disorders. J Neurol. 2010; 257(8): 1293–1297.
  111. Strowd RE, Herco M, Passmore-Griffin L, et al. Association between subthalamic nucleus deep brain stimulation and weight gain: Results of a case-control study. Clin Neurol Neurosurg. 2016; 140: 38–42.
  112. Valldeoriola F, Grandas F, Santos-García D, et al. Long-term effectiveness of levodopa-carbidopa intestinal gel in 177 Spanish patients with advanced Parkinson's disease. Neurodegener Dis Manag. 2016; 6(4): 289–298.
  113. Wetmore JB, Arbelo JM, Catalán MJ, et al. Psychometric properties of the apathy scale in advanced Parkinson's disease. Parkinsons Dis. 2019; 2019: 1965394.
  114. Bellante F, Dethy S, Zegers de Beyl D. Depression, anxiety and non-motor symptoms on initiation of intrajejunal levodopa/carbidopa therapy. Acta Neurol Belg. 2016; 116(1): 39–41.
  115. Fasano A, Ricciardi L, Lena F, et al. Intrajejunal levodopa infusion in advanced Parkinson's disease: long-term effects on motor and non-motor symptoms and impact on patient's and caregiver's quality of life. Eur Rev Med Pharmacol Sci. 2012; 16(1): 79–89.
  116. Antonini A, Yegin A, Preda C, et al. GLORIA study investigators and coordinators. Global long-term study on motor and non-motor symptoms and safety of levodopa-carbidopa intestinal gel in routine care of advanced Parkinson's disease patients; 12-month interim outcomes. Parkinsonism Relat Disord. 2015; 21(3): 231–235.
  117. Cáceres-Redondo MT, Carrillo F, Lama MJ, et al. Long-term levodopa/carbidopa intestinal gel in advanced Parkinson's disease. J Neurol. 2014; 261(3): 561–569.
  118. Honig H, Antonini A, Martinez-Martin P, et al. Intrajejunal levodopa infusion in Parkinson's disease: a pilot multicenter study of effects on nonmotor symptoms and quality of life. Mov Disord. 2009; 24(10): 1468–1474.
  119. Standaert DG, Rodriguez RL, Slevin JT, et al. Effect of Levodopa-carbidopa intestinal gel on non-motor symptoms in patients with advanced Parkinson's disease. Mov Disord Clin Pract. 2017; 4(6): 829–837.
  120. Buongiorno M, Antonelli F, Cámara A, et al. Long-term response to continuous duodenal infusion of levodopa/carbidopa gel in patients with advanced Parkinson disease: The Barcelona registry. Parkinsonism Relat Disord. 2015; 21(8): 871–876.
  121. Chang FCF, Kwan Vu, van der Poorten D, et al. Intraduodenal levodopa-carbidopa intestinal gel infusion improves both motor performance and quality of life in advanced Parkinson's disease. J Clin Neurosci. 2016; 25: 41–45.
  122. Zibetti M, Rizzone M, Merola A, et al. Sleep improvement with levodopa/carbidopa intestinal gel infusion in Parkinson disease. Acta Neurol Scand. 2013; 127(5): e28–e32.
  123. Merola A, Espay AJ, Romagnolo A, et al. Advanced therapies in Parkinson's disease: long-term retrospective study. Parkinsonism Relat Disord. 2016; 29: 104–108.
  124. Valldeoriola F, Santacruz P, Ríos J, et al. l-Dopa/carbidopa intestinal gel and subthalamic nucleus stimulation: effects on cognition and behavior. Brain Behav. 2017; 7(11): e00848.
  125. Blaise AS, Baille G, Carrière N, et al. Safety and effectiveness of levodopa-carbidopa intestinal gel for advanced Parkinson's disease: A large single-center study. Rev Neurol (Paris). 2020; 176(4): 268–276.
  126. Wang L, Li J, Chen J. Levodopa-carbidopa intestinal gel in Parkinson's disease: a systematic review and meta-analysis. Front Neurol. 2018; 9: 620.
  127. Wetmore JB, Arbelo JM, Catalán MJ, et al. Psychometric properties of the Apathy Scale in advanced Parkinson's disease. Parkinsons Dis. 2019; 2019: 1965394.
  128. Gironell A, Pascual-Sedano B, Otermin P, et al. [Weight gain after functional surgery for Parkinsons disease] [Article in Spanish]. Neurologia. 2002; 17: 310–316.
  129. van Laar T, Postma AG, Drent M. Continuous subcutaneous infusion of apomorphine can be used safely in patients with Parkinson's disease and pre-existing visual hallucinations. Parkinsonism Relat Disord. 2010; 16(1): 71–72.
  130. Geerligs L, Meppelink AM, Brouwer WH, et al. The effects of apomorphine on visual perception in patients with Parkinson disease and visual hallucinations: a pilot study. Clin Neuropharmacol. 2009; 32(5): 266–268.
  131. Drapier S, Gillioz AS, Leray E, et al. Apomorphine infusion in advanced Parkinson's patients with subthalamic stimulation contraindications. Parkinsonism Relat Disord. 2012; 18(1): 40–44.
  132. Mathers SE, Kempster PA, Law PJ, et al. Constipation and paradoxical puborectalis contraction in anismus and Parkinson's disease: a dystonic phenomenon? J Neurol Neurosurg Psychiatry. 1988; 51(12): 1503–1507.
  133. Edwards LL, Quigley EM, Harned RK, et al. Defecatory function in Parkinson's disease: response to apomorphine. Ann Neurol. 1993; 33(5): 490–493.
  134. Tison F, Wiart L, Guatterie M, et al. Effects of central dopaminergic stimulation by apomorphine on swallowing disorders in Parkinson's disease. Mov Disord. 1996; 11(6): 729–732.
  135. Tribl GG, Sycha T, Kotzailias N, et al. Apomorphine in idiopathic restless legs syndrome: an exploratory study. J Neurol Neurosurg Psychiatry. 2005; 76(2): 181–185.
  136. Haba-Rubio J, Staner L, Cornette F, et al. Acute low single dose of apomorphine reduces periodic limb movements but has no significant effect on sleep arousals: a preliminary report. Neurophysiol Clin. 2003; 33(4): 180–184.
  137. Factor SA, Brown DL, Molho ES. Subcutaneous apomorphine injections as a treatment for intractable pain in Parkinson's disease. Mov Disord. 2000; 15(1): 167–169, doi: 10.1002/1531-8257(200001)15:1<167::aid-mds1029>3.0.co;2-8.
  138. Coelho M, Ferreira J, Rosa M, et al. Treatment options for non-motor symptoms in late-stage Parkinson's disease. Expert Opin Pharmacother. 2008; 9(4): 523–535.
  139. Dellapina E, Gerdelat-Mas A, Ory-Magne F, et al. Apomorphine effect on pain threshold in Parkinson's disease: a clinical and positron emission tomography study. Mov Disord. 2011; 26(1): 153–157.
  140. Christmas TJ, Kempster PA, Chapple CR, et al. Role of subcutaneous apomorphine in parkinsonian voiding dysfunction. Lancet. 1988; 2(8626-8627): 1451–1453.
  141. Magennis B, Cashell A, O’Brien D, et al. An audit of apomorphine in the management of complex idiopathic Parkinson’s disease in Ireland. Mov Disord. 2012; 27(Suppl. 1)–S44.
  142. Todorova A, Martin A, Okai D, et al. Assessment of impulse control disorders in Parkinson’s patients with infusion therapies: a single centre experience. Mov Disord. 2013; 28(Suppl. 1): S133.
  143. Fox SH, Katzenschlager R, Lim SY, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson's disease. Mov Disord. 2018; 33(8): 1248–1266.
  144. Parkinson’s disease in adults. NICE guideline [NG71]. www.nice.org.uk/guidance/ng71 (January 16, 2022).
  145. Antonini A, Stoessl AJ, Kleinman LS, et al. Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson's disease: a multi-country Delphi-panel approach. Curr Med Res Opin. 2018; 34(12): 2063–2073.
  146. Odin P, Ray Chaudhuri K, Slevin JT, et al. National Steering Committees. Collective physician perspectives on non-oral medication approaches for the management of clinically relevant unresolved issues in Parkinson's disease: Consensus from an international survey and discussion program. Parkinsonism Relat Disord. 2015; 21(10): 1133–1144.
  147. Postuma R, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015; 30(12): 1591–1601.
  148. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008; 23(15): 2129–2170.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel. +48 58 320 94 94, faks +48 58 320 94 60, e-mail: viamedica@viamedica.pl