Tom 17, Nr 4 (2021)
Artykuł przeglądowy
Opublikowany online: 2021-12-31

dostęp otwarty

Wyświetlenia strony 9603
Wyświetlenia/pobrania artykułu 298
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Witaminy z grupy B w leczeniu powikłań neurologicznych infekcji COVID-19

Filip Przytuła1, Jarosław Sławek12
Pol. Przegl. Neurol 2021;17(4):165-175.

Streszczenie

Zakażenie koronawirusem zespołu ostrej niewydolności oddechowej 2 może doprowadzić do różnorodnych powikłań, które mogą się utrzymywać przez wiele miesięcy po przebytej infekcji. Wiele z tych powikłań dotyczy układu nerwowego. Witaminy z grupy B pełnią istotną rolę w funkcjonowaniu zarówno ośrodkowego, jak i obwodowego układu nerwowego oraz w działaniu układu odpornościowego. Od początku pandemii poszukiwane są leki, które przeciwdziałają zachorowaniu na chorobę koronawirusową 2019 (COVID-19, coronavirus disease 2019), łagodzą przebieg choroby oraz zwalczają powikłania przebytej infekcji. Celem opracowania jest przegląd opublikowanych dotąd badań dotyczących skuteczności witamin z grupy B w leczeniu powikłań neurologicznych COVID-19.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Sivan M, Taylor S. NICE guideline on long covid. BMJ. 2020; 371: m4938.
  2. Jahrami H, BaHammam AS, Bragazzi NL, et al. Sleep problems during the COVID-19 pandemic by population: a systematic review and meta-analysis. J Clin Sleep Med. 2021; 17(2): 299–313.
  3. Delorme C, Houot M, Rosso C, et al. The wide spectrum of COVID-19 neuropsychiatric complications within a multidisciplinary centre. Brain Commun. 2021; 3(3).
  4. Roy D, Ghosh R, Dubey S, et al. Neurological and neuropsychiatric impacts of COVID-19 pandemic. Can J Neurol Sci. 2020.
  5. Przytuła F, Błądek S, Sławek J. Two COVID-19-related video-accompanied cases of severe ataxia-myoclonus syndrome. Neurol Neurochir Pol. 2021; 55(3): 310–313.
  6. Tipton PW, Wszolek ZK. What can Parkinson's disease teach us about COVID-19? Neurol Neurochir Pol. 2020; 54(2): 204–206.
  7. Franke C, Ferse C, Kreye J, et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021; 93: 415–419.
  8. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–273.
  9. Salamanna F, Maglio M, Landini MP, et al. Body localization of ACE-2: on the trail of the keyhole of SARS-CoV-2. Front Med (Lausanne). 2020; 7: 594495.
  10. Doobay MF, Talman LS, Obr TD, et al. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2007; 292(1): R373–R381.
  11. Matschke J, Lütgehetmann M, Hagel C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020; 19(11): 919–929.
  12. Brandão PR, Grippe TC, Pereira DA, et al. New-onset movement disorders associated with COVID-19. Tremor Other Hyperkinet Mov (N Y). 2021; 11: 26.
  13. Koralnik IJ, Tyler KL. COVID-19: a global threat to the nervous system. Ann Neurol. 2020; 88(1): 1–11.
  14. Ponti G, Roli L, Oliva G, et al. Homocysteine (Hcy) assessment to predict outcomes of hospitalized Covid-19 patients: a multicenter study on 313 Covid-19 patients. Clin Chem Lab Med. 2021; 59(9): e354–e357.
  15. Wichlińska-Lubińska M, Lubiński I. Znaczenie homocysteiny w patogenezie udaru niedokrwiennego mózgu. Udar Mozgu — Probl Interdyscyplinarne. 2009; 11(2): 80–4.
  16. Roszmann A. Rola homocysteiny w patogenezie otępienia i depresji w chorobie Parkinsona. Rozprawa na stopień doktora nauk medycznych. Gdański Uniwersytet Medyczny, Gdańsk 2014.
  17. Sławek J, Roszmann A, Robowski P, et al. The impact of MRI white matter hyperintensities on dementia in Parkinson's disease in relation to the homocysteine level and other vascular risk factors. Neurodegener Dis. 2013; 12(1): 1–12.
  18. Szadejko K, Dziewiatowski K, Szabat K, et al. Polyneuropathy in levodopa-treated Parkinson's patients. J Neurol Sci. 2016; 371: 36–41.
  19. McCaddon A, Regland B. COVID-19: a methyl-group assault? Med Hypotheses. 2021; 149: 110543.
  20. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020; 24(1): 360.
  21. Iba T, Levy JH, Iba T, et al. Coagulopathy in COVID-19. J Thromb Haemost. 2020; 18(9): 2103–2109.
  22. Grimaldi S, Lagarde S, Harlé JR, et al. Autoimmune encephalitis concomitant with SARS-CoV-2 infection: insight from F-FDG PET imaging and neuronal autoantibodies. J Nucl Med. 2020; 61(12): 1726–1729.
  23. Hirschfeld AS. Autoimmune mediated hyperkinetic movement disorders in SARS-CoV-2 infection — a systematic review. Neurol Neurochir Pol. 2021 [Epub ahead of print].
  24. Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011; 14(6): 724–738.
  25. Bâ A. Metabolic and structural role of thiamine in nervous tissues. Cell Mol Neurobiol. 2008; 28(7): 923–931.
  26. Spinneker A, Sola R, Lemmen V, et al. Vitamin B6 status, deficiency and its consequences — an overview. Nutr Hosp. 2007; 22(1): 7–24.
  27. Nowak D. Vitamin C in human health and disease. Nutrients. 2021; 13(5): 1595.
  28. Alberto C, Ospina C, Orlando M, et al. B vitamins in the nervous system: current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020; 26(1): 5–13.
  29. Galmés S, Serra F, Palou A. Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients. 2020; 12(9).
  30. Li T, Yu B, Liu Z, et al. Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury. Nat Commun. 2018; 9(1): 11.
  31. Singh Y, Gupta G, Kazmi I, et al. SARS CoV-2 aggravates cellular metabolism mediated complications in COVID-19 infection . Dermatol Ther. 2020; 33(6): e13871.
  32. Postuma RB, Espay AJ, Zadikoff C, et al. Vitamins and entacapone in levodopa-induced hyperhomocysteinemia: a randomized controlled study . Neurology. 2006; 66(12): 1941–1943.
  33. Jolivalt CG, Mizisin LM, Nelson A, et al. B vitamins alleviate indices of neuropathic pain in diabetic rats. Eur J Pharmacol. 2009; 612(1-3): 41–47.
  34. Vatsalya V, Li F, Frimodig JC. Therapeutic prospects for Th-17 cell immune storm syndrome and neurological symptoms in COVID-19: thiamine efficacy and safety, in-vitro evidence and pharmacokinetic profile. medRxiv. 2020.
  35. Mikkelsen K, Apostolopoulos V. Vitamin B1, B2, B3, B5, and B6 and the immune system. In: Mahmoudi M, Rezaei N. ed. Nutrition and immunity. Springer, Cham 2019.
  36. Shakoor H, Feehan J, Mikkelsen K, et al. Be well: a potential role for vitamin B in COVID-19. Maturitas. 2021; 144: 108–111.
  37. Can vitamin B12 be an adjuvant to COVID-19 treatment? GSC Biological and Pharmaceutical Sciences. 2020; 11(3): 001–005.
  38. Wen Tan C, Liam Pock Ho 2 , Shirin Kalimuddin L, Kalimuddin S, et al. A cohort study to evaluate the effect of combination vitamin D, magnesium and vitamin B12 (DMB) on progression to severe outcome in older COVID-19 patients. Nutrition. 2020(79–80): 111017.
  39. Shakeri H, Azimian A, Ghasemzadeh-Moghaddam H, et al. Evaluation of the relationship between serum levels of zinc, vitamin B12, vitamin D, and clinical outcomes in patients with COVID-19. J Med Virol. 2022; 94(1): 141–146.
  40. Al Sulaiman K, Aljuhani O, Al Dossari M, et al. Evaluation of thiamine as adjunctive therapy in COVID-19 critically ill patients: a two-center propensity score matched study. Crit Care. 2021; 25(1): 223.
  41. Novel Coronavirus Information Center. Elsevier’s free health and medical research on the novel coronavirus (SARS-CoV-2) and COVID-19. https://www.elsevier.com/connect/coronavirus-information-center (January 31, 2020).
  42. Narayanan N, Nair DT. Vitamin B12 may inhibit RNA-dependent-RNA polymerase activity of nsp12 from the SARS-CoV-2 virus. IUBMB Life. 2020; 72(10): 2112–2120.
  43. Jimenez-Guardeño JM, Ortega-Prieto AM, Moreno BM, et al. Drug repurposing based on a quantum-inspired method versus classical fingerprinting uncovers potential antivirals against SARS-CoV-2 including vitamin B12. bioRxiv. 2021.
  44. Butowt R, von Bartheld CS. Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection. Neuroscientist. 2020.
  45. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020; 6(31).
  46. Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6. ACS Chem Neurosci. 2020; 11(17): 2774–2781.
  47. Boscolo-Rizzo P, Polesel J, Spinato G, et al. Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol Head Neck Surg. 2020; 146(8): 729–732.
  48. Pissurno N, Garcia de Castro Lichs G, Lima dos Santos EJ, et al. Anosmia in the course of COVID-19. Medicine (Baltimore). 2020; 99(31): e21280 .
  49. Vityala Y, Zhumabekova A, Dzhumakova C, et al. Mirror writing in a patient with frontal lobe epilepsy. Clin Case Rep. 2021; 9(5): e04239–247.
  50. Chen C, Chen M, Cheng C. A special symptom of olfactory dysfunction in coronavirus disease 2019: report of three cases. J Neurovirol. 2020; 26(3): 456–458.
  51. Kas A, Soret M, Pyatigoskaya N, et al. on the behalf of CoCo-Neurosciences study group and COVID SMIT PSL study group. The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur J Nucl Med Mol Imaging. 2021; 48(8): 2543–2557.
  52. Hugon J, Msika EF, Queneau M, et al. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2021 [Epub ahead of print].
  53. Sutter R, Ristic A, Rüegg S, et al. Myoclonus in the critically ill: diagnosis, management, and clinical impact. Clin Neurophysiol. 2016; 127(1): 67–80.