Inwazyjne monitorowanie niedokrwienia mózgu u chorych po urazach czaszkowo-mózgowych
Streszczenie
Monitorowanie wtórnego niedokrwienia mózgu rozpoczyna się we wczesnym okresie po urazie czaszkowo-mózgowym (TBI, traumatic brain injury). Najczęściej stosowaną procedurą jest stały, przyłóżkowy pomiar ciśnienia wewnątrzczaszkowego. Inne możliwości to monitorowanie saturacji krwi żylnej w opuszce żyły szyjnej wewnętrznej, prężności tlenu w mózgu, ocena regionalnego przepływu krwi w mózgowiu oraz mikrodializy. Obecnie brakuje dowodów świadczących o przewadze jednej z opisanych metod; co więcej, nie ma bezspornych dowodów ich przydatności klinicznej. Istnieją jedynie dowody klasy III, według których zaleca się monitorowanie saturacji krwi żylnej w opuszce żyły szyjnej wewnętrznej i prężności tlenu w mózgu podczas głębokiej hiperwentylacji, tj. w przypadkach, w których prężność CO2 jest mniejsza niż 20–25 mm Hg. W pracy omówiono metody inwazyjnej oceny wtórnego niedokrwienia mózgu u chorych po TBI.
Słowa kluczowe: obrzęk mózguciśnienie śródczaszkowesaturacja krwi żylnej w opuszce żyły szyjnej wewnętrznejprężność tlenu w mózguregionalny przepływ mózgowymikrodalizy
Referencje
- Miller JD, Becker DP, Ward JD, et al. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977; 47(4): 503–516.
- Miller JD, Butterworth JF, Gudeman SK, et al. Further experience in the management of severe head injury. J Neurosurg. 1981; 54(3): 289–299.
- Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979; 50(1): 20–25.
- Dang Q, Simon J, Catino J, et al. More fateful than fruitful? Intracranial pressure monitoring in elderly patients with traumatic brain injury is associated with worse outcomes. J Surg Res. 2015; 198(2): 482–488.
- Unterberg AW, Kienning KL, Hartl R, et al. Multi-modal monitoring in patients with head injury: evaluation of the efects of treatment on cerebral oxygenation. J Trauma. 1997; 42(5 Suppl): S32–S37.
- Juul N, Morris GF, Marshall SB, et al. Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg. 2000; 92(1): 1–6.
- Valadka AB, Gopinath SP, Contant CF, et al. Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med. 1998; 26(9): 1576–1581.
- Raboel PH, Bartek J, Andresen M, et al. Intracranial pressure monitoring: invasive versus non-invasive methods — a review. Crit Care Res Pract. 2012; 2012: 950393.
- Harary M, Dolmans RGF, Gormley WB. Intracranial pressure monitoring-review and avenues for development. Sensors (Basel). 2018; 18(2).
- Kawoos U, McCarron RM, Auker CR, et al. Advances in intracranial pressure monitoring and its significance in managing traumatic brain injury. Int J Mol Sci. 2015; 16(12): 28979–28997.
- Le Roux P. Chapter 15: Intracranial pressure monitoring and management. In: Laskowitz D, Grant G. ed. Translational research in traumatic brain injury. Taylor & Francis Group, Boca Raton 2015: 315–330.
- Chesnut RM, Temkin N, Carney N, et al. Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012; 367(26): 2471–2481.
- Forsyth RJ, Raper J, Todhunter E. Routine intracranial pressure monitoring in acute coma. Cochrane Database Syst Rev. 2015(11): CD002043.
- Bullock MR, Povlishock JT. Guidelines for the management of severe traumatic brain injury. Editor's commentary . J Neurotrauma. 2007; 24(Suppl 1): 2 p preceding S1.
- Shell RM, Cole DJ. Cerebral monitoring: jugular venous oximetry. Anesth Analg. 2000; 90(3): 559–566.
- Bhardwaj A, Bhagat H, Grover V. Jugular venous oximetry. Crit Care. 2018; 02(03): 225–231.
- White H, Baker A. Continuous jugular venous oximetry in the neurointensive care unit--a brief review. Can J Anaesth. 2002; 49(6): 623–629.
- Stover JF. Actual evidence for neuromonitoring-guided intensive care following severe traumatic brain injury. Swiss Med Wkly. 2011; 141: w13245.
- Carney N, Totten AM, O'Reilly C, et al. Guidelines for the management of severe traumatic brain Injury, fourth edition. Neurosurgery. 2017; 80(1): 6–15.
- Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci. 1962; 102: 29–45.
- Gupta AK, Hutchinson PJ, Fryer T, et al. Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method. J Neurosurg. 2002; 96(2): 263–268.
- Dings J, Meixensberger J, Jäger A, et al. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery. 1998; 43(5): 1082–1095.
- van den Brink WA, Haitsma IK, Avezaat CJ, et al. Brain parenchyma/pO2 catheter interface: a histopathological study in the rat. J Neurotrauma. 1998; 15(10): 813–824.
- van den Brink WA, van Santbrink H, Steyerberg EW, et al. Brain oxygen tension in severe head injury. Neurosurgery. 2000; 46(4): 868–76; discussion 876.
- Stiefel MF, Spiotta A, Gracias VH, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J Neurosurg. 2005; 103(5): 805–811.
- Arbit E, DiResta G. Application of laser doppler flowmetry in neurosurgery. Neurosurgery Clinics of North America. 1996; 7(4): 741–748.
- Carter LP. Thermal diffusion flowmetry. Neurosurg Clin North Am. 1996; 7(4): 749–754.
- Newman W, Bowman H, Orgill D, et al. A methodology for in vivo measurement of blood flow in small tissue volumes. ASME Adv Heat Mass. 1995; 32: 99–105.
- Sioutos PJ, Orozco JA, Carter L, et al. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995; 36(5): 943–950.
- Schröder ML, Muizelaar JP. Monitoring of regional cerebral blood flow (CBF) in acute head injury by thermal diffusion. Acta Neurochir Suppl (Wien). 1993; 59: 47–49.
- Newell DW, Aaslid R, Stooss R, et al. The relationship of blood flow velocity fluctuations to intracranial pressure B waves. J Neurosurg. 1992; 76(3): 415–421.
- Klar E, Kraus T, Bredt M, et al. First clinical realization of continuous monitoring of liver microcirculation after transplantation by thermodiffusion. Transpl Int. 1996; 9 Suppl 1: S140–S143.
- Vajkoczy P, Roth H, Horn P, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000; 93(2): 265–274.
- Jaeger M, Soehle M, Schuhmann MU, et al. Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir (Wien). 2005; 147(1): 51–6; discussion 56.
- Müller M. Science, medicine, and the future: microdialysis. BMJ. 2002; 324(7337): 588–591.
- Ungerstedt U. Microdialysis — principles and applications for studies in animals and man. J Intern Med. 1991; 230(4): 365–373.
- Gardner EL, Chen J, Paredes W. Overview of chemical sampling techniques. J Neurosci Methods. 1993; 48(3): 173–197.
- Maggs DG, Borg WP, Sherwin RS. Microdialysis techniques in the study of brain and skeletal muscle. Diabetologia. 1997; 40(Suppl 2): S75–S82.
- Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006; 97(1): 18–25.
- de Lima Oliveira M, Kairalla AC, Fonoff ET, et al. Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art. Neurocrit Care. 2014; 21(1): 152–162.