Tom 19, Nr 4 (2023)
Artykuł przeglądowy
Opublikowany online: 2024-02-07
Wyświetlenia strony 356
Wyświetlenia/pobrania artykułu 163
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Postępowanie w opóźnionym niedokrwieniu mózgu po krwawieniu podpajęczynówkowym z pękniętego tętniaka — rola małoinwazyjnego monitorowania hemodynamicznego

Karol Zaczkowski1, Karol Wiśniewski1, Michał Stankiewicz-Rudnicki2, Olga Wiśniewska2, Marika Ogrodnik2, Dariusz J. Jaskólski1
Pol. Przegl. Neurol 2023;19(4):284-294.

Streszczenie

Brak

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Kassell NF, Sasaki T, Colohan AR, et al. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke. 1985; 16(4): 562–572.
  2. Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol. 1983; 14(6): 599–608.
  3. Teasdale GM, Drake CG, Hunt W, et al. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988; 51(11): 1457.
  4. Crobeddu E, Mittal MK, Dupont S, et al. Predicting the lack of development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke. 2012; 43(3): 697–701.
  5. Abdel-Tawab M, Hasan A, Ahmed M, et al. Prognostic factors of delayed cerebral ischemia after subarachnoid hemorrhage including CT perfusion: a prospective cohort study. Egypt J Radiol Nucl Med. 2020; 51(1).
  6. Yin L, Ma CY, Li ZK, et al. Predictors analysis of symptomatic cerebral vasospasm after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011; 110(Pt 2): 175–178.
  7. Duan W, Pan Y, Wang C, et al. CNSR Investigators. Risk factors and clinical impact of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: analysis from the China National Stroke Registry. Neuroepidemiology. 2018; 50(3-4): 128–136.
  8. Rautalin I, Juvela S, Martini ML, et al. Risk factors for delayed cerebral ischemia in good-grade patients with aneurysmal subarachnoid hemorrhage. J Am Heart Assoc. 2022; 11(23): e027453.
  9. Chen S, Feng H, Sherchan P, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014; 115: 64–91.
  10. Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014; 10(1): 44–58.
  11. Miller BA, Turan N, Chau M, et al. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. Biomed Res Int. 2014; 2014: 384342.
  12. Kolias AG, Sen J, Belli A. Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res. 2009; 87(1): 1–11.
  13. Ayer RE, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl. 2008; 104: 33–41.
  14. Clatterbuck RE, Gailloud P, Ogata L, et al. Prevention of cerebral vasospasm by a humanized anti-CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg. 2003; 99(2): 376–382.
  15. Fassbender K, Hodapp B, Rossol S, et al. Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke. 2000; 31(12): 2971–2975.
  16. Chaichana KL, Pradilla G, Huang J, et al. Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010; 73(1): 22–41.
  17. Dankbaar JW, Rijsdijk M, van der Schaaf IC, et al. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009; 51(12): 813–819.
  18. Vergouwen MDI, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010; 41(10): 2391–2395.
  19. Helbok R, Madineni RC, Schmidt MJ, et al. Intracerebral monitoring of silent infarcts after subarachnoid hemorrhage. Neurocrit Care. 2011; 14(2): 162–167.
  20. Rabinstein AA, Friedman JA, Weigand SD, et al. Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2004; 35(8): 1862–1866.
  21. Vergouwen MDI, Jong-Tjien-Fa AV, Algra A, et al. Time trends in causes of death after aneurysmal subarachnoid hemorrhage: A hospital-based study. Neurology. 2016; 86(1): 59–63.
  22. Wintermark M, Thiran JP, Maeder P, et al. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol. 2001; 22(5): 905–914.
  23. Mir DIA, Gupta A, Dunning A, et al. CT perfusion for detection of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2014; 35(5): 866–871.
  24. Sanelli PC, Ugorec I, Johnson CE, et al. Using quantitative CT perfusion for evaluation of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2011; 32(11): 2047–2053.
  25. Claassen J, Hirsch LJ, Kreiter KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004; 115(12): 2699–2710.
  26. Rosenthal ES, Biswal S, Zafar SF, et al. Continuous electroencephalography predicts delayed cerebral ischemia after subarachnoid hemorrhage: A prospective study of diagnostic accuracy. Ann Neurol. 2018; 83(5): 958–969.
  27. Rots ML, van Putten MJ, Hoedemaekers CWE, et al. Continuous EEG monitoring for early detection of delayed cerebral ischemia in subarachnoid hemorrhage: a pilot study. Neurocrit Care. 2016; 24(2): 207–216.
  28. Dreier JP, Winkler MKL, Major S, et al. Spreading depolarizations in ischaemia after subarachnoid haemorrhage, a diagnostic phase III study. Brain. 2022; 145(4): 1264–1284.
  29. Sarrafzadeh AS, Vajkoczy P, Bijlenga P, et al. Monitoring in neurointensive care — the challenge to detect delayed cerebral ischemia in high-grade aneurysmal SAH. Front Neurol. 2014; 5: 134.
  30. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014; 40(12): 1795–1815.
  31. Kouz K, Michard F, Bergholz A, et al. Agreement between continuous and intermittent pulmonary artery thermodilution for cardiac output measurement in perioperative and intensive care medicine: a systematic review and meta-analysis. Crit Care. 2021; 25(1): 125.
  32. Grensemann J. Cardiac output monitoring by pulse contour analysis, the technical basics of less-invasive techniques. Front Med (Lausanne). 2018; 5: 64.
  33. Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. Crit Care. 2017; 21(1): 147.
  34. Ganter MT, Alhashemi JA, Al-Shabasy AM, et al. Continuous cardiac output measurement by un-calibrated pulse wave analysis and pulmonary artery catheter in patients with septic shock. J Clin Monit Comput. 2016; 30(1): 13–22.
  35. Kalmar A, Wesseling W, Scheeren T. Technology report ccNexfin Monitor. Nederlands tijdschrift voor anesthesiologie. 2013; 26: 4–8.
  36. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008; 134(1): 172–178.
  37. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013; 41(7): 1774–1781.
  38. Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009; 37(9): 2642–2647.
  39. Monnet X, Shi R, Teboul JL. Prediction of fluid responsiveness. What's new? Ann Intensive Care. 2022; 12(1): 46.
  40. de Courson H, Ferrer L, Cane G, et al. Evaluation of least significant changes of pulse contour analysis-derived parameters. Ann Intensive Care. 2019; 9(1): 116.
  41. Messina A, Dell'Anna A, Baggiani M, et al. Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care. 2019; 23(1): 264.
  42. Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015; 5(1): 38.
  43. Dankbaar JW, Slooter AJc, Rinkel GJe, et al. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010; 14(1): R23.
  44. Raabe A, Beck J, Keller M, et al. Relative importance of hypertension compared with hypervolemia for increasing cerebral oxygenation in patients with cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2005; 103(6): 974–981.
  45. Gathier CS, van den Bergh WM, van der Jagt M, et al. HIMALAIA Study Group. Induced hypertension for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a randomized clinical trial. Stroke. 2018; 49(1): 76–83.
  46. Muench E, Horn P, Bauhuf C, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007; 35(8): 1844–51; quiz 1852.
  47. Darby JM, Yonas H, Marks EC, et al. Acute cerebral blood flow response to dopamine-induced hypertension after subarachnoid hemorrhage. J Neurosurg. 1994; 80(5): 857–864.
  48. Kim DH, Joseph M, Ziadi S, et al. Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Neurosurgery. 2003; 53(5): 1044–1052.
  49. Lennihan L, Mayer SA, Fink ME, et al. Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke. 2000; 31(2): 383–391.
  50. Kissoon NR, Mandrekar JN, Fugate JE, et al. Positive fluid balance is associated with poor outcomes in subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2015; 24(10): 2245–2251.
  51. Diringer MN, Bleck TP, Claude Hemphill J, et al. Neurocritical Care Society. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference. Neurocrit Care. 2011; 15(2): 211–240.
  52. Mutoh T, Kazumata K, Ishikawa T, et al. Performance of bedside transpulmonary thermodilution monitoring for goal-directed hemodynamic management after subarachnoid hemorrhage. Stroke. 2009; 40(7): 2368–2374.
  53. Mutoh T, Kazumata K, Terasaka S, et al. Early intensive versus minimally invasive approach to postoperative hemodynamic management after subarachnoid hemorrhage. Stroke. 2014; 45(5): 1280–1284.
  54. Anetsberger A, Gempt J, Blobner M, et al. Impact of goal-directed therapy on delayed ischemia after aneurysmal subarachnoid hemorrhage: randomized controlled trial. Stroke. 2020; 51(8): 2287–2296.
  55. Messina A, Villa F, Lionetti G, et al. Hemodynamic management of acute brain injury caused by cerebrovascular diseases: a survey of the European Society of Intensive Care Medicine. Intensive Care Med Exp. 2022; 10(1): 42.
  56. Diringer MN, Bleck TP, Claude Hemphill J, et al. Neurocritical Care Society. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference. Neurocrit Care. 2011; 15(2): 211–240.
  57. Levine J, Kofke A, Cen L, et al. Red blood cell transfusion is associated with infection and extracerebral complications after subarachnoid hemorrhage. Neurosurgery. 2010; 66(2): 312–318; discussion 318.
  58. Kramer AH, Gurka MJ, Nathan B, et al. Complications associated with anemia and blood transfusion in patients with aneurysmal subarachnoid hemorrhage. Crit Care Med. 2008; 36(7): 2070–2075.
  59. Festic E, Rabinstein AA, Freeman WD, et al. Blood transfusion is an important predictor of hospital mortality among patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2013; 18(2): 209–215.
  60. Smith MJ, Le Roux PD, Elliott JP, et al. Blood transfusion and increased risk for vasospasm and poor outcome after subarachnoid hemorrhage. J Neurosurg. 2004; 101(1): 1–7.
  61. Firlik AD, Kaufmann AM, Jungreis CA, et al. Effect of transluminal angioplasty on cerebral blood flow in the management of symptomatic vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 1997; 86(5): 830–839.
  62. Rosenwasser RH, Armonda RA, Thomas JE, et al. Therapeutic modalities for the management of cerebral vasospasm: timing of endovascular options. Neurosurgery. 1999; 44(5): 975–9; discussion 979.
  63. Hui C, Lau KP. Efficacy of intra-arterial nimodipine in the treatment of cerebral vasospasm complicating subarachnoid haemorrhage. Clin Radiol. 2005; 60(9): 1030–1036.
  64. Schmidt U, Bittner E, Pivi S, et al. Hemodynamic management and outcome of patients treated for cerebral vasospasm with intraarterial nicardipine and/or milrinone. Anesth Analg. 2010; 110(3): 895–902.
  65. Foreman B. The pathophysiology of delayed cerebral ischemia. J Clin Neurophysiol. 2016; 33(3): 174–182.
  66. Castanares-Zapatero D, Hantson P. Pharmacological treatment of delayed cerebral ischemia and vasospasm in subarachnoid hemorrhage. Ann Intensive Care. 2011; 1(1): 12.
  67. Brathwaite S, Macdonald RL. Current management of delayed cerebral ischemia: update from results of recent clinical trials. Transl Stroke Res. 2014; 5(2): 207–226.
  68. Liu GJ, Luo J, Zhang LiP, et al. Meta-analysis of the effectiveness and safety of prophylactic use of nimodipine in patients with an aneurysmal subarachnoid haemorrhage. CNS Neurol Disord Drug Targets. 2011; 10(7): 834–844.
  69. Petruk KC, West M, Mohr G, et al. Nimodipine treatment in poor-grade aneurysm patients. J Neurosurg. 1988; 68(4): 505–517.
  70. Feigin VL, Rinkel GJ, Algra A, et al. Calcium antagonists in patients with aneurysmal subarachnoid hemorrhage: a systematic review. Neurology. 1998; 50(4): 876–883.
  71. Rabinstein AA, Lanzino G, Wijdicks EFm. Multidisciplinary management and emerging therapeutic strategies in aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2010; 9(5): 504–519.
  72. MacDonald RL. Evidence-based treatment of subarachnoid hemorrhage: current status and future possibilities. Clin Neurosurg. 2006; 53: 257–266.
  73. Haley EC, Kassell NF, Torner JC. A randomized controlled trial of high-dose intravenous nicardipine in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study. J Neurosurg. 1993; 78(4): 537–547.
  74. Sauzeau V, Le Jeune H, Cario-Toumaniantz C, et al. Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem. 2000; 275(28): 21722–21729.
  75. Liu GJ, Wang ZJ, Wang YFu, et al. Systematic assessment and meta-analysis of the efficacy and safety of fasudil in the treatment of cerebral vasospasm in patients with subarachnoid hemorrhage. Eur J Clin Pharmacol. 2012; 68(2): 131–139.
  76. Shibuya M, Suzuki Y, Sugita K, et al. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg. 1992; 76(4): 571–577.
  77. Bohara S, Garg K, Singh Rajpal PM, et al. Role of cilostazol in prevention of vasospasm after aneurysmal subarachnoid hemorrhage-a systematic review, meta-analysis, and trial sequential analysis. World Neurosurg. 2021; 150: 161–170.
  78. Tseng MY, Hutchinson PJ, Richards HK, et al. Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a Phase II randomized, double-blind, placebo-controlled trial. Clinical article. J Neurosurg. 2009; 111(1): 171–180.
  79. Guo J, Shi Z, Yang K, et al. Endothelin receptor antagonists for subarachnoid hemorrhage. Cochrane Database Syst Rev. 2012(9): CD008354.