Tom 19, Nr 3 (2023)
Wytyczne / stanowisko ekspertów
Opublikowany online: 2023-09-11
Wyświetlenia strony 1655
Wyświetlenia/pobrania artykułu 164
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Leczenie modyfikujące przebieg stwardnienia rozsianego. Rekomendacje Sekcji Stwardnienia Rozsianego i Neuroimmunologii Polskiego Towarzystwa Neurologicznego

Alina Kułakowska1, Dagmara Mirowska-Guzel2, Alicja Kalinowska3, Halina Bartosik-Psujek4, Waldemar Brola5, Andrzej Głąbiński6, Mariusz Stasiołek7, Jacek Losy8, Andrzej Potemkowski9, Konrad Rejdak10, Iwona Sarzyńska-Długosz11, Małgorzata Siger7, Adam Stępień12, Sławomir Wawrzyniak13, Jacek Zaborski14, Beata Zakrzewska-Pniewska15, Monika Adamczyk-Sowa16
Pol. Przegl. Neurol 2023;19(3):163-189.

Streszczenie

Stwardnienie rozsiane (SM, sclerosis multiplex) to zapalna, demielinizacyjna choroba ośrodkowego układu nerwowego o podłożu autoimmunologicznym. Obserwacje jej naturalnego przebiegu wskazują, że jest ciężką i przewlekłą chorobą, która u nieleczonych pacjentów może prowadzić do znacznego inwa lidztwa i skracać długość życia. P ostęp w terapii SM, który dokonał się w ostatnich latach, znacząco poprawia rokowanie. Aktualnie dysponujemy terapiami korzystnie modyfikującymi przebieg rzutowo-remisyjnej, pierwotnie postępującej i wtórnie postępującej postaci SM. W publikacji przedstawiono rekomendacje dotyczące rozpoczynania, monitorowania, zmiany i ewentualnego zaprzestania podawania leków modyfikujących przebieg choroby.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Soelberg Sorensen P, Giovannoni G, Montalban X, et al. The multiple sclerosis care unit. Mult Scler. 2019; 25(5): 627–636.
  2. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Lett. 2014; 588(22): 4207–4213.
  3. Hauser SL, Cree BAC. Treatment of multiple sclerosis: a review. Am J Med. 2020; 133(12): 1380–1390.e2.
  4. Clinically isolated syndrome (CIS). https://www.nationalmssociety.org/What-is-MS/Types-of-MS/Clinically-Isolated-Syndrome-(CIS) (March 27, 2021).
  5. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 83(3): 278–286.
  6. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018; 17(2): 162–173.
  7. Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 2012; 11(2): 157–169.
  8. Adamczyk-Sowa M, Kalinowska A, Siger M, et al. Diagnostyka stwardnienia rozsianego. Rekomendacje Sekcji Stwardnienia Rozsianego i Neuroimmunologii Polskiego Towarzystwa Neurologicznego. Pol Przegl Neurol. 2021; 17(4): 149–164.
  9. Förster M, Graf J, Mares J, et al. Drug treatment of clinically isolated syndrome. CNS Drugs. 2019; 33(7): 659–676.
  10. Fisniku LK, Brex PA, Altmann DR, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008; 131(Pt 3): 808–817.
  11. Montalban X, Gold R, Thompson AJ, et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Eur J Neurol. 2018; 25(2): 215–237.
  12. Rae-Grant A, Day G, Marrie R, et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis. Neurology. 2018; 90(17): 777–788.
  13. Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009; 72(9): 800–805.
  14. Yamout B, Al Khawajah M. Radiologically isolated syndrome and multiple sclerosis. Mult Scler Relat Disord. 2017; 17: 234–237.
  15. Makhani N. Treatment considerations in the radiologically isolated syndrome. Curr Treat Options Neurol. 2020; 22(1): 3.
  16. Okuda DT, Kantarci O, Lebrun-Frénay C, et al. Dimethyl fumarate delays multiple sclerosis in radiologically isolated syndrome. Ann Neurol. 2023; 93(3): 604–614.
  17. Brola W, Sobolewski P, Żak M, et al. Profile of Polish patients with primary progressive multiple sclerosis. Mult Scler Relat Disord. 2019; 33: 33–38.
  18. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 83(3): 278–286.
  19. Lublin FD, Coetzee T, Cohen JA, et al. International Advisory Committee on Clinical Trials in MS. The 2013 clinical course descriptors for multiple sclerosis: a clarification. Neurology. 2020; 94(24): 1088–1092.
  20. Capra R, Cordioli C, Rasia S, et al. Assessing long-term prognosis improvement as a consequence of treatment pattern changes in MS. Mult Scler. 2017; 23(13): 1757–1761.
  21. Chalmer TA, Baggesen LM, Nørgaard M, et al. Danish Multiple Sclerosis Group. Early versus later treatment start in multiple sclerosis: a register-based cohort study. Eur J Neurol. 2018; 25(10): 1262–e110.
  22. Brownlee WJ, Wolf C, Hartung HP, et al. Use of follow-on disease-modifying treatments for multiple sclerosis: consensus recommendations. Mult Scler. 2022; 28(14): 2177–2189.
  23. Tramacere I, Del Giovane C, Salanti G, et al. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev. 2015; 2015(9): CD011381.
  24. Kalincik T, Brown JW, Robertson N, et al. MSBase Study Group. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurol. 2017; 16(4): 271–281.
  25. Fogarty E, Schmitz S, Tubridy N, et al. Comparative efficacy of disease-modifying therapies for patients with relapsing remitting multiple sclerosis: Systematic review and network meta-analysis. Mult Scler Relat Disord. 2016; 9: 23–30.
  26. Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: a new treatment paradigm. Curr Opin Neurol. 2018; 31(3): 233–243.
  27. Vollmer T. The natural history of relapses in multiple sclerosis. J Neurol Sci. 2007; 256(Suppl 1): S5–13.
  28. Comi G, Radaelli M, Soelberg Sørensen P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet. 2017; 389(10076): 1347–1356.
  29. Schmierer K, Sørensen PS, Baker D. Highly effective disease-modifying treatment as initial MS therapy. Curr Opin Neurol. 2021; 34(3): 286–294.
  30. Iaffaldano P, Lucisano G, Caputo F, et al. Italian MS Register. Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies. Ther Adv Neurol Disord. 2021; 14: 17562864211019574.
  31. Buron MD, Chalmer TA, Sellebjerg F, et al. Initial high-efficacy disease-modifying therapy in multiple sclerosis: A nationwide cohort study. Neurology. 2020; 95(8): e1041–e1051.
  32. Charakterystyka produktu leczniczego Betaferon®. https://www.ema.europa.eu/en/medicines/human/EPAR/betaferon (January 31, 2023).
  33. Charakterystyka produktu leczniczego Avonex®. https://www.ema.europa.eu/en/medicines/human/EPAR/avonex (January 31, 2023).
  34. Charakterystyka produktu leczniczego Plegridy®. https://www.ema.europa.eu/en/medicines/human/EPAR/plegridy (January 31, 2023).
  35. Charakterystyka produktu leczniczego Rebif®. https://www.ema.europa.eu/en/medicines/human/EPAR/rebif (January 31, 2023).
  36. Charakterystyka produktu leczniczego Copaxone®. https://rejestrymedyczne.ezdrowie.gov.pl/rpl/search/public (January 31, 2023).
  37. Charakterystyka produktu leczniczego Tecfidera®. https://www.ema.europa.eu/en/medicines/human/EPAR/tecfidera (January 31, 2023).
  38. Charakterystyka produktu leczniczego Vumerity®. https://www.ema.europa.eu/en/medicines/human/EPAR/vumerity (January 31, 2023).
  39. Charakterystyka produktu leczniczego Aubagio®. https://www.ema.europa.eu/en/medicines/human/EPAR/aubagio (January 31, 2023).
  40. Charakterystyka produktu leczniczego Ocrevus®. https://www.ema.europa.eu/en/medicines/human/EPAR/ocrevus (January 31, 2023).
  41. Charakterystyka produktu leczniczego Kesimpta®. https://www.ema.europa.eu/en/medicines/human/EPAR/kesimpta (January 31, 2023).
  42. Charakterystyka produktu leczniczego Zeposia®. https://www.ema.europa.eu/en/medicines/human/EPAR/zeposia (January 31, 2023).
  43. Charakterystyka produktu leczniczego Ponvory®. https://www.ema.europa.eu/en/medicines/human/EPAR/ponvory (January 31, 2023).
  44. Charakterystyka produktu leczniczego Mavenclad®. https://www.ema.europa.eu/en/medicines/human/EPAR/mavenclad (January 31, 2023).
  45. Charakterystyka produktu leczniczego Tysabri®. https://www.ema.europa.eu/en/medicines/human/EPAR/tysabri (January 31, 2023).
  46. Charakterystyka produktu leczniczego Gilenya®. https://www.ema.europa.eu/en/medicines/human/EPAR/gilenya (January 31, 2023).
  47. Charakterystyka produktu leczniczego Lemtrada®. https://www.ema.europa.eu/en/medicines/human/EPAR/lemtrada (January 31, 2023).
  48. Tintore M, Rovira À, Río J, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015; 138(Pt 7): 1863–1874.
  49. Louapre C, Bodini B, Lubetzki C, et al. Imaging markers of multiple sclerosis prognosis. Curr Opin Neurol. 2017; 30(3): 231–236.
  50. Briggs FBS, Thompson NR, Conway DS. Prognostic factors of disability in relapsing remitting multiple sclerosis. Mult Scler Relat Disord. 2019; 30: 9–16.
  51. Menon S, Shirani A, Zhao Y, et al. Characterising aggressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013; 84(11): 1192–1198.
  52. Rush CA, MacLean HJ, Freedman MS. Aggressive multiple sclerosis: proposed definition and treatment algorithm. Nat Rev Neurol. 2015; 11(7): 379–389.
  53. Yamout B, Sahraian M, Bohlega S, et al. Consensus recommendations for the diagnosis and treatment of multiple sclerosis: 2019 revisions to the MENACTRIMS guidelines. Mult Scler Relat Disord. 2020; 37: 101459.
  54. Kappos L, Bar-Or A, Cree BAC, et al. EXPAND Clinical Investigators. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018; 391(10127): 1263–1273.
  55. Charakterystyka produktu leczniczego Mayzent®. https://www.ema.europa.eu/en/medicines/human/EPAR/mayzent (January 31, 2023).
  56. Kappos L, Weinshenker B, Pozzilli C, et al. European (EU-SPMS) Interferon beta-1b in Secondary Progressive Multiple Sclerosis Trial Steering Committee and Independent Advisory Board, North American (NA-SPMS) Interferon beta-1b in Secondary Progressive Multiple Sclerosis Trial Steering Committee and Independent Advisory Board. Interferon beta-1b in secondary progressive MS: a combined analysis of the two trials. Neurology. 2004; 63(10): 1779–1787.
  57. Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-Beta-1a in MS (SPECTRIMS) Study Group. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: clinical results. Neurology. 2001; 56(11): 1496–1504.
  58. Rojas JI, Romano M, Ciapponi A, et al. Interferon beta for primary progressive multiple sclerosis. Cochrane Database Syst Rev. 2009(1): CD006643.
  59. Wiendl H, Gold R, Berger T, et al. ‘Multiple Sclerosis Therapy Consensus Group’ (MSTCG). Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord. 2021; 14: 17562864211039648.
  60. Montalban X, Hauser SL, Kappos L, et al. ORATORIO Clinical Investigators. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017; 376(3): 209–220.
  61. Calabresi PA. B-cell depletion — a frontier in monoclonal antibodies for multiple sclerosis. N Engl J Med. 2017; 376(3): 280–282.
  62. Wolinsky JS, Arnold DL, Brochet B, et al. Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2020; 19(12): 998–1009.
  63. Lyman GH. Neutropenia. In: Schwab M. ed. Encyclopedia of cancer. Springer, Berlin, Heidelberg 2011.
  64. National Cancer Institute. Common Terminology Criteria for Adverse Events v4.0, NCI, NIH, DHHS. NIH publication Bethesda, MD, 2009.
  65. Jinna S, Khandhar PB. Thrombocytopenia. In: StatPearls. StatPearls Publishing, Treasure Island, FL 2022. https://www.ncbi.nlm.nih.gov/books/NBK542208/ (July 25, 2021).
  66. Kalinowska A, Kułakowska A, Adamczyk-Sowa M, et al. Recommendations for neurological, obstetrical and gynaecological care in women with multiple sclerosis: a statement by a working group convened by the Section of Multiple Sclerosis and Neuroimmunology of the Polish Neurological Society. Neurol Neurochir Pol. 2020; 54(2): 125–137.
  67. Freedman MS, Rush CA. Severe, highly active, or aggressive multiple sclerosis. Continuum (Minneap Minn). 2016; 22(3): 761–784.
  68. Díaz C, Zarco LA, Rivera DM. Highly active multiple sclerosis: an update. Mult Scler Relat Disord. 2019; 30: 215–224.
  69. Bigaut K, Cohen M, Durand-Dubief F, et al. French Group for Recommendations in Multiple Sclerosis (France4MS) and the Société Française de la Sclérose En Plaques (SFSEP). How to switch disease-modifying treatments in multiple sclerosis: guidelines from the French Multiple Sclerosis Society (SFSEP). Mult Scler Relat Disord. 2021; 53: 103076.
  70. Vaughn CB, Jakimovski D, Kavak KS, et al. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol. 2019; 15(6): 329–342.
  71. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013; 123(3): 958–965.
  72. Mills EA, Mao-Draayer Y. Aging and lymphocyte changes by immunomodulatory therapies impact PML risk in multiple sclerosis patients. Mult Scler. 2018; 24(8): 1014–1022.
  73. Tremlett H, Zhao Y, Joseph J, et al. UBCMS Clinic Neurologists. Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry. 2008; 79(12): 1368–1374.
  74. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018; 97(4): 742–768.
  75. Filippi M, Danesi R, Derfuss T, et al. Early and unrestricted access to high-efficacy disease-modifying therapies: a consensus to optimize benefits for people living with multiple sclerosis. J Neurol. 2022; 269(3): 1670–1677.
  76. Tobin WO, Weinshenker BG. Stopping immunomodulatory medications in MS: Frequency, reasons and consequences. Mult Scler Relat Disord. 201Treatment withdrawal in relapsing-remitting multiple sclerosis: a retrospective cohort study. Eur J Neurol. Mult Scler Relat Disord. 2015; 4(5): 437–443.
  77. Lus G, Signoriello E, Maniscalco GT, et al. Treatment withdrawal in relapsing-remitting multiple sclerosis: a retrospective cohort study. Eur J Neurol. 2016; 23(3): 489–493.
  78. Kister I, Spelman T, Alroughani R, et al. MSBase Study Group. Discontinuing disease-modifying therapy in MS after a prolonged relapse-free period: a propensity score-matched study. J Neurol Neurosurg Psychiatry. 2016; 87(10): 1133–1137.
  79. Birnbaum G. Stopping disease-modifying therapy in nonrelapsing multiple sclerosis: experience from a clinical practice. Int J MS Care. 2017; 19(1): 11–14.
  80. Bsteh G, Feige J, Ehling R, et al. Discontinuation of disease-modifying therapies in multiple sclerosis — clinical outcome and prognostic factors. Mult Scler. 2017; 23(9): 1241–1248.
  81. Kister I, Spelman T, Patti F, et al. Predictors of relapse and disability progression in MS patients who discontinue disease-modifying therapy. J Neurol Sci. 2018; 391: 72–76.
  82. Hua LeH, Fan TH, Conway D, et al. Discontinuation of disease-modifying therapy in patients with multiple sclerosis over age 60. Mult Scler. 2019; 25(5): 699–708.
  83. Hua LeH, Harris H, Conway D, et al. Changes in patient-reported outcomes between continuers and discontinuers of disease modifying therapy in patients with multiple sclerosis over age 60. Mult Scler Relat Disord. 2019; 30: 252–256.
  84. Yano H, Gonzalez C, Healy BC, et al. Discontinuation of disease-modifying therapy for patients with relapsing-remitting multiple sclerosis: Effect on clinical and MRI outcomes. Mult Scler Relat Disord. 2019; 35: 119–127.
  85. Kaminsky AL, Omorou AY, Soudant M, et al. Discontinuation of disease-modifying treatments for multiple sclerosis in patients aged over 50 with disease Inactivity. J Neurol. 2020; 267(12): 3518–3527.
  86. Pasca M, Forci B, Mariottini A, et al. Sustained disease remission after discontinuation of disease modifying treatments in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2021; 47: 102591.
  87. Jakimovski D, Kavak KS, Vaughn CB, et al. New York State Multiple Sclerosis Consortium (NYSMSC). Discontinuation of disease modifying therapies is associated with disability progression regardless of prior stable disease and age. Mult Scler Relat Disord. 2022; 57: 103406.
  88. Prosperini L, Kinkel RP, Miravalle AA, et al. Post-natalizumab disease reactivation in multiple sclerosis: systematic review and meta-analysis. Ther Adv Neurol Disord. 2019; 12: 1756286419837809.
  89. Barry B, Erwin AA, Stevens J, et al. Fingolimod rebound: a review of the clinical experience and management considerations. Neurol Ther. 2019; 8(2): 241–250.
  90. Pantazou V, Pot C, Du Pasquier R, et al. Recurrence of disease activity after fingolimod discontinuation in older patients previously stable on treatment. Mult Scler Relat Disord. 2021; 51: 102918.
  91. Discontinuation of Disease Modifying Therapies (DMTs) in Multiple Sclerosis (MS) (DISCOMS). https://clinicaltrials.gov/ct2/show/results/NCT03073603?term=03073603&draw=2&rank=1 (January 2, 2023).
  92. Bsteh G, Hegen H, Riedl K, et al. Quantifying the risk of disease reactivation after interferon and glatiramer acetate discontinuation in multiple sclerosis: The VIAADISC score. Eur J Neurol. 2021; 28(5): 1609–1616.