dostęp otwarty

Tom 13, Nr 2 (2017)
Artykuł przeglądowy
Pobierz cytowanie

Ciśnienie śródczaszkowe a mózgowy przepływ krwi

Karol Wiśniewski, Maciej Bryl, Ernest J. Bobeff, Rafał Wójcik, Dariusz J. Jaskólski
Pol. Przegl. Neurol 2017;13(2):57-62.

dostęp otwarty

Tom 13, Nr 2 (2017)
Artykuły przeglądowe

Streszczenie

Ciśnienie śródczaszkowe i mózgowy przepływ krwi to jedne z podstawowych pojęć neurofizjologicznych. Znajomość związanych z nimi zagadnień jest warunkiem zrozumienia ważnych procesów patologicznych zachodzących w ośrodkowym układzie nerwowym. W pracy omówiono fizjologię i patofizjologię ciśnienia śródczaszkowego, przepływu mózgowego oraz ich wzajemne relacje, w tym koncepcję krytycznego ciśnienia zamykającego naczynia mózgowe.

Streszczenie

Ciśnienie śródczaszkowe i mózgowy przepływ krwi to jedne z podstawowych pojęć neurofizjologicznych. Znajomość związanych z nimi zagadnień jest warunkiem zrozumienia ważnych procesów patologicznych zachodzących w ośrodkowym układzie nerwowym. W pracy omówiono fizjologię i patofizjologię ciśnienia śródczaszkowego, przepływu mózgowego oraz ich wzajemne relacje, w tym koncepcję krytycznego ciśnienia zamykającego naczynia mózgowe.

Pobierz cytowanie

Słowa kluczowe

ciśnienie śródczaszkowe, mózgowy przepływ krwi, krytyczne ciśnienie zamykające naczynia mózgowe, ciśnienie perfuzyjne mózgu, średnie ciśnienie tętnicze

Informacje o artykule
Tytuł

Ciśnienie śródczaszkowe a mózgowy przepływ krwi

Czasopismo

Polski Przegląd Neurologiczny

Numer

Tom 13, Nr 2 (2017)

Typ artykułu

Artykuł przeglądowy

Strony

57-62

Rekord bibliograficzny

Pol. Przegl. Neurol 2017;13(2):57-62.

Słowa kluczowe

ciśnienie śródczaszkowe
mózgowy przepływ krwi
krytyczne ciśnienie zamykające naczynia mózgowe
ciśnienie perfuzyjne mózgu
średnie ciśnienie tętnicze

Autorzy

Karol Wiśniewski
Maciej Bryl
Ernest J. Bobeff
Rafał Wójcik
Dariusz J. Jaskólski

Referencje (52)
  1. Pollock LJ, Boshes B. Cerebrospinal fluid pressure. Arch Neurol Psychiatry. 1936; 36(5): 931–974.
  2. Weed LH. Some limitations of the Monro–Kellie hypothesis. Arch Surg. 1929; 18(4): 1049–1068.
  3. Martin G. Lundberg's B waves as a feature of normal intracranial pressure. Surg Neurol. 1978; 9(6): 347–348.
  4. Andresen M, Juhler M. Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg. 2014; 121(4): 797–801.
  5. Hamer J, Alberti E, Hoyer S, et al. Influence of systemic and cerebral vascular factors on the cerebrospinal fluid pulse waves. J Neurosurg. 1977; 46(1): 36–45.
  6. Droste DW, Krauss JK, Berger W, et al. Rhythmic oscillations with a wavelength of 0.5–2 min in transcranial Doppler recordings. Acta Neurol Scand. 1994; 90(2): 99–104.
  7. Symon L, Dorsch NW. Use of long-term intracranial pressure measurement to assess hydrocephalic patients prior to shunt surgery. J Neurosurg. 1975; 42(3): 258–273.
  8. Pickard JD, Teasdale G, Matheson M. et al. Intraventricular pressure waves — the best predictive test for shunting in normal pressure hydrocephalus. In: Shulman K, Marmarou A, Miller JD. et al. ed. Intracranial pressure IV. Springer, Berlin 1980: 498–500.
  9. Raftopoulos C, Chaskis C, Delecluse F, et al. Morphological quantitative analysis of intracranial pressure waves in normal pressure hydrocephalus. Neurol Res. 1992; 14(5): 389–396.
  10. Hamer J, Alberti E, Hoyer S, et al. Influence of systemic and cerebral vascular factors on the cerebrospinal fluid pulse waves. J Neurosurg. 1977; 46(1): 36–45.
  11. Eide PK, Brean A. Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien). 2006; 148(11): 1151–6; discussion 1156.
  12. Holm S, Eide PK. The frequency domain versus time domain methods for processing of intracranial pressure (ICP) signals. Med Eng Phys. 2008; 30(2): 164–170.
  13. Eide PK, Sorteberg W. Intracranial pressure levels and single wave amplitudes, Glasgow Coma Score and Glasgow Outcome Score after subarachnoid haemorrhage. Acta Neurochir (Wien). 2006; 148(12): 1267–1275; discussion 1275.
  14. Battro A, Gonzalez Segura R, Elicabe CA, et al. Influence of respiration on blood pressure in man with note on vasomotor waves. Arch Int Med. 1944; 73(1): 29.
  15. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960; 36(149): 1–193.
  16. Longfitt TW, Weinstein JD, Kassel NF. Conference Proceeding (Head Injury Conference, 1st University of Chicago). In: Cavaness WF, Walker AE. ed. Lippincott Co. Philadelphia 1966.
  17. Clarke DD, Sokoloff L. Circulation and energy metabolism of the brain.Siegel G, Agrano BV, Albers RW. et al. ed. Raven Press, New York 1989: 565–590.
  18. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Cirs Res. 1990; 66(1): 8–17.
  19. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990; 87(24): 9868–9872.
  20. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992; 89(12): 5675–5679.
  21. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006; 26(7–8): 1057–1083.
  22. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994; 36(4): 557–565.
  23. Iadecola C. Cerebral circulatory dysregulation in ischemia. In: Ginsberg MD, Bogousslavsky J. ed. Cerebrovascular diseases. Blackwell Science, Cambridge 1998: 319–332.
  24. Moss E. The cerebral circulation. Cont Educ Anaesth Crit Care Pain. 2001; 1(3): 67–71.
  25. Kontos HA, Wei EP, Raper AJ, et al. Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol. 1978; 234(5): H582–H591.
  26. Osol G, Brekke JF, McElroy-Yaggy K, et al. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol. 2002; 283(6): H2260–H2267.
  27. Cipolla MJ, Smith J, Kohlmeyer MM, et al. SKCa and IKCa channels, myogenic tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of ischemia and reperfusion. Stroke. 2009; 40(4): 1451–1457.
  28. Reivich M. Arterial PCO2 and cerebral hemodynamics. Am J Physiol. 1964; 206: 25–35.
  29. Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948; 27(4): 484–492.
  30. Masamoto K, Tanishita K. Oxygen transport in brain tissue. J Biomech Eng. 2009; 131(7): 074002.
  31. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004; 16(1): 1–13.
  32. Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985). 2006; 100(3): 1059–1064.
  33. Drake CT, Iadecola C. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang. 2007; 102(2): 141–152.
  34. Chesnut RM. Guidelines for the management of severe head injury. Eur J Anaesth. 1998; 15(Suppl 17): 39–40.
  35. Unterberg AW, Kiening KL, Härtl R, et al. Multimodal monitoring in patients with head injury: evaluation of the effects of treatment on cerebral oxygenation. J Trauma. 1997; 42(5 Suppl): S32–S37.
  36. Juul N, Morris GF, Marshall SB, et al. Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg. 2000; 92(1): 1–6.
  37. Klabunde RE. Mean arterial aressure. In: Cardiovascular physiology concepts. Lippincott Williams & Wilkins, Philadelphia 2009.
  38. Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986; 65(5): 636–641.
  39. Rosner MJ. Cerebral perfusion pressure: the link between the cerebral and systemic circulations. In: Wood JH. ed. Cerebral blood flow: physiologic and clinical aspects. McGraw Hill, New York 1986.
  40. Weyland A, Buhre W, Grund S, et al. Cerebrovascular tone rather than intracranial pressure determines the effective downstream pressure of the cerebral circulation in the absence of intracranial hypertension. J Neurosurg Anesthesiol. 2000; 12(3): 210–216.
  41. Palmer S, Bader MK. Brain tissue oxygenation in brain death. Neurocrit Care. 2005; 2(1): 17–22.
  42. Varsos GV, Richards H, Kasprowicz M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2013; 33(2): 235–243.
  43. Varsos GV, Richards HK, Kasprowicz M, et al. Cessation of diastolic cerebral blood flow velocity: the role of critical closing pressure. Neurocrit Care. 2014; 20(1): 40–48.
  44. Varsos GV, Budohoski KP, Kolias AG, et al. Relationship of vascular wall tension and autoregulation following traumatic brain injury. Neurocrit Care. 2014; 21(2): 266–274.
  45. Thees C, Scholz M, Schaller M D C, et al. Relationship between intracranial pressure and critical closing pressure in patients with neurotrauma. Anesthesiology. 2002; 96(3): 595–599.
  46. Purins K, Enblad P, Wiklund L, et al. Brain tissue oxygenation and cerebral perfusion pressure thresholds of ischemia in a standardized pig brain death model. Neurocrit Care. 2012; 16(3): 462–469.
  47. Zurynski Y, Dorsch N, Pearson I, et al. Transcranial Doppler ultrasound in brain death: experience in 140 patients. Neurol Res. 1991; 13(4): 248–252.
  48. Ducrocq X, Braun M, Debouverie M, et al. Brain death and transcranial Doppler: experience in 130 cases of brain dead patients. J Neurol Sci. 1998; 160(1): 41–46.
  49. Soehle M, Czosnyka M, Pickard JD, et al. Critical closing pressure in subarachnoid hemorrhage: effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation. Stroke. 2004; 35(6): 1393–1398.
  50. Kumar A, Schmidt EA, Hiler M, et al. Asymmetry of critical closing pressure following head injury. J Neurol Neurosurg Psychiatry. 2005; 76(11): 1570–1573.
  51. Gooskens I, Schmidt EA, Czosnyka M, et al. Pressure-autoregulation, CO2 reactivity and asymmetry of haemodynamic parameters in patients with carotid artery stenotic disease. A clinical appraisal. Acta Neurochir (Wien). 2003; 145(7): 527–32; discussion 532.
  52. Panerai RB, White RP, Markus HS, et al. Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure. Stroke. 1998; 29(11): 2341–2346.

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel. +48 58 320 94 94, faks +48 58 320 94 60, e-mail: viamedica@viamedica.pl