Tom 13, Nr 2 (2017)
Opis przypadku
Opublikowany online: 2017-07-08

dostęp otwarty

Wyświetlenia strony 2041
Wyświetlenia/pobrania artykułu 19832
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Toksyczne uszkodzenie mózgu z dominującym zespołem pozapiramidowym i amnestycznym w następstwie zatrucia tlenkiem węgla

Krystian Obara1, Sławomir Budrewicz1, Marta Waliszewska-Prosół1, Agata Rojek1, Maria Ejma1
Pol. Przegl. Neurol 2017;13(2):82-87.

Streszczenie

Tlenek węgla (CO) jest bezbarwnym, bezwonnym, pozbawionym smaku i właściwości drażniących gazem, który preferencyjnie łączy się z hemoglobiną z powinowactwem 200-230 razy silniejszym niż tlen. Powoduje uszkodzenie narządów najbardziej wrażliwych na niedotlenienie, w obrębie układu nerwowego przede wszystkim mózgowia. Zatrucie CO manifestuje się zróżnicowanym obrazem klinicznym, co przy braku ukierunkowanego wywiadu chorobowego może istotnie utrudnić ustalenie właściwego rozpoznania.

Przedstawiono 66-letnią kobietę, u której w następstwie zatrucia tlenkiem węgla rozwinęła się encefalopatia z silnie wyrażonym zespołem pozapiramidowym i amnestycznym. W MRI mózgowia w obrazach T1-zależnych uwidoczniono charakterystyczne, hiperintensywne obszary, odpowiadające krwotocznej martwicy obu gałek bladych.

Referencje

  1. Douglas CG, Haldane JS, Haldane JB. The laws of combination of haemoglobin with carbon monoxide and oxygen. J Physiol. 1912; 44(4): 275–304.
  2. Haldane JB. Carbon Monoxide as a Tissue Poison. Biochem J. 1927; 21(5): 1068–1075.
  3. Hampson NB, Hauff NM. Carboxyhemoglobin levels in carbon monoxide poisoning: do they correlate with the clinical picture? Am J Emerg Med. 2008; 26(6): 665–669.
  4. Dallas ML, Yang Z, Boyle JP, et al. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current. Am J Respir Crit Care Med. 2012; 186(7): 648–656.
  5. Qingsong W, Yeming G, Xuechun L, et al. The free radical scavenger, edaravone, ameliorates delayed neuropsychological sequelae after acute carbon monoxide poisoning in rabbits. Undersea Hyperb Med. 2013; 40(3): 223–229.
  6. Buckley NA, Juurlink DN, Isbister G, et al. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev. 2011(4): CD002041.
  7. http:/www oshaslc gov/SLTC/healthguidelines/carbonmonoxide/recognition html. Occupational safety and health administration. Occupational safety and health guideline for carbon monoxide. (1st January 2017).
  8. DiMaio VJ, DiMaio D. Zatrucie tlenkiem węgla. Wydawnictwo medyczne Urban & Partner, Warszawa. 2003: 363–372.
  9. Ku CH, Hung HM, Leong WaC, et al. Outcome of patients with carbon monoxide poisoning at a far-east poison center. PLoS One. 2015; 10(3): e0118995.
  10. Rahmani M, Belaidi H, Benabdeljlil M, et al. Bilateral brachial plexus injury following acute carbon monoxide poisoning. BMC Pharmacol Toxicol. 2013; 14: 61.
  11. Wang X, Li Z, Berglass J, et al. MRI and clinical manifestations of delayed encephalopathy after carbon monoxide poisoning. Pak J Pharm Sci. 2016; 29(6 Suppl): 2317–2320.
  12. Lin YT, Chen SY, Lo CP, et al. Utilizing Cerebral Perfusion Scan and Diffusion-tensor MR Imaging to Evaluate the Effect of Hyperbaric Oxygen Therapy in Carbon Monoxide-induced Delayed Neuropsychiatric Seqeulae- A Case Report and Literature Review. Acta Neurol Taiwan. 2015; 24(2): 57–62.
  13. Chen SY, Lin CC, Lin YT, et al. Reversible Changes of Brain Perfusion SPECT for Carbon Monoxide Poisoning-Induced Severe Akinetic Mutism. Clin Nucl Med. 2016; 41(5): e221–e227.
  14. García A, Maestro I. Reversible motor and sensory peripheral neuropathy in a patient following acute carbon monoxide intoxication. Electromyogr Clin Neurophysiol. 2005; 45(1): 19–21.
  15. Ubaidulhaq M, Lee YAh, Jiang H. Chorea as the Neurological Symptom of Delayed Encephalopathy After Carbon Monoxide Intoxication in a Child. Neurohospitalist. 2016; 6(3): 130–131.
  16. Choi I. Parkinsonism after Carbon Monoxide Poisoning. European Neurology. 2002; 48(1): 30–33.
  17. Sohn YH, Jeong Y, Kim HS, et al. The brain lesion responsible for parkinsonism after carbon monoxide poisoning. Arch Neurol. 2000; 57(8): 1214–1218.
  18. Jaeckle RS, Nasrallah HA. Major depression and carbon monoxide-induced parkinsonism: diagnosis, computerized axial tomography, and response to L-dopa. J Nerv Ment Dis. 1985; 173(8): 503–508.
  19. Tack E, de Reuck J. The use of bromocriptine in parkinsonism after carbon monoxide poisoning. Clin Neurol Neurosurg. 1987; 89(4): 275–279.
  20. Shprecher D, Mehta L. The syndrome of delayed post-hypoxic leukoencephalopathy. NeuroRehabilitation. 2010; 26(1): 65–72.
  21. Parkinson RB, Hopkins RO, Cleavinger HB, et al. White matter hyperintensities and neuropsychological outcome following carbon monoxide poisoning. Neurology. 2002; 58(10): 1525–1532.
  22. Nielsen VG, Kirklin JK, George JF. Carbon monoxide releasing molecule-2 increases the velocity of thrombus growth and strength in human plasma. Blood Coagul Fibrinolysis. 2009; 20(5): 377–380.
  23. Malayaman SN, Cohen JB, Machovec KA, et al. Carbon monoxide releasing molecule-2 enhances α2-antiplasmin activity. Blood Coagul Fibrinolysis. 2011; 22(4): 345–348.
  24. Chang KH, Han MH, Kim HS, et al. Delayed encephalopathy after acute carbon monoxide intoxication: MR imaging features and distribution of cerebral white matter lesions. Radiology. 1992; 184(1): 117–122.
  25. Kamada K, Houkin K, Aoki T, et al. Cerebral metabolic changes in delayed carbon monoxide sequelae studied by proton MR spectroscopy. Neuroradiology. 1994; 36(2): 104–106.
  26. Tatsch K, Schwarz J, Mozley PD, et al. Relationship between clinical features of Parkinson's disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med. 1997; 24(4): 415–421.
  27. Lee MS, Kim YD, Im JH, et al. 123I-IPT brain SPECT study in essential tremor and Parkinson's disease. Neurology. 1999; 52(7): 1422–1426.
  28. Klawans HL, Stein RW, Tanner CM, et al. A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol. 1982; 39(5): 302–304.
  29. Queiroga CSF, Almeida AS, Vieira HLA. Carbon monoxide targeting mitochondria. Biochem Res Int. 2012; 2012: 749845.
  30. Shibanuma T, Nakamura R, Hirakawa Y, et al. Observation of in vivo cytochrome-based electron-transport dynamics using time-resolved evanescent wave electroabsorption spectroscopy. Angew Chem Int Ed Engl. 2011; 50(39): 9137–9140.
  31. Dallas ML, Boyle JP, Milligan CJ, et al. Carbon monoxide protects against oxidant-induced apoptosis via inhibition of Kv2.1. FASEB J. 2011; 25(5): 1519–1530.