dostęp otwarty

Tom 13, Nr 2 (2017)
Artykuł przeglądowy
Opublikowany online: 2017-07-08
Pobierz cytowanie

Zastosowanie robotyki w rehabilitacji zaburzeń chodu w schorzeniach neurologicznych

Beata Tarnacka12, Paweł Turczyn12
Pol. Przegl. Neurol 2017;13(2):63-73.
Afiliacje
  1. Klinika Rehabilitacji, Warszawski Uniwersytet Medyczny, ul. Barska 16/20, 02-315 Warszawa, Polska
  2. Oddział Rehabilitacji, Mazowieckie Centrum Rehabilitacji STOCER, Warszawa, Polska

dostęp otwarty

Tom 13, Nr 2 (2017)
Artykuły przeglądowe
Opublikowany online: 2017-07-08

Streszczenie

Neurolodzy, specjaliści rehabilitacji i fizjoterapeuci dysponują coraz nowszymi metodami rehabilitacji w schorzeniach układu nerwowego, wykorzystywanymi przede wszystkim w przypadkach uszkodzenia mózgu i rdzenia kręgowego. W ostatnim czasie powstało wiele nowych koncepcji dotyczących możliwości poprawy stanu neurologicznego, wśród których wymienić można koncepcję regeneracji neuronalnej, czy reorganizacji funkcjonalnej. Są one wykorzystywane do poszukiwania nowych metod rehabilitacji, których celem jest poprawa funkcji systemów neuronalnych. W artykule przedstawiono przegląd nowych metod rehabilitacji chodu z wykorzystaniem robotów, a także ich wpływ na obwody rdzeniowe oraz mózg. Opisano również podział i zastosowanie różnych układów robotycznych przeznaczonych do rehabilitacji chodu oraz praktyczne aspekty ich zastosowania.

Streszczenie

Neurolodzy, specjaliści rehabilitacji i fizjoterapeuci dysponują coraz nowszymi metodami rehabilitacji w schorzeniach układu nerwowego, wykorzystywanymi przede wszystkim w przypadkach uszkodzenia mózgu i rdzenia kręgowego. W ostatnim czasie powstało wiele nowych koncepcji dotyczących możliwości poprawy stanu neurologicznego, wśród których wymienić można koncepcję regeneracji neuronalnej, czy reorganizacji funkcjonalnej. Są one wykorzystywane do poszukiwania nowych metod rehabilitacji, których celem jest poprawa funkcji systemów neuronalnych. W artykule przedstawiono przegląd nowych metod rehabilitacji chodu z wykorzystaniem robotów, a także ich wpływ na obwody rdzeniowe oraz mózg. Opisano również podział i zastosowanie różnych układów robotycznych przeznaczonych do rehabilitacji chodu oraz praktyczne aspekty ich zastosowania.

Pobierz cytowanie

Słowa kluczowe

rehabilitacja chodu, roboty, neuroplastyczność

Informacje o artykule
Tytuł

Zastosowanie robotyki w rehabilitacji zaburzeń chodu w schorzeniach neurologicznych

Czasopismo

Polski Przegląd Neurologiczny

Numer

Tom 13, Nr 2 (2017)

Typ artykułu

Artykuł przeglądowy

Strony

63-73

Opublikowany online

2017-07-08

Wyświetlenia strony

1920

Wyświetlenia/pobrania artykułu

6797

Rekord bibliograficzny

Pol. Przegl. Neurol 2017;13(2):63-73.

Słowa kluczowe

rehabilitacja chodu
roboty
neuroplastyczność

Autorzy

Beata Tarnacka
Paweł Turczyn

Referencje (88)
  1. Moore JL, Roth EJ, Killian C, et al. Locomotor training improves daily stepping activity and gait efficiency in individuals poststroke who have reached a "plateau" in recovery. Stroke. 2010; 41(1): 129–135.
  2. Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001; 32(6): 1279–1284.
  3. Nijland R, van Wegen E, Verbunt J, et al. A comparison of two validated tests for upper limb function after stroke: The Wolf Motor Function Test and the Action Research Arm Test. J Rehabil Med. 2010; 42(7): 694–696.
  4. Dietz V, Müller R. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain. 2004; 127(Pt 10): 2221–2231.
  5. Hubli M, Bolliger M, Limacher E, et al. Spinal neuronal dysfunction after stroke. Exp Neurol. 2012; 234(1): 153–160.
  6. Dietz V, Grillner S, Trepp A, et al. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain. 2009; 132(Pt 8): 2196–2205.
  7. Hubli M, Dietz V, Bolliger M. Spinal reflex activity: a marker for neuronal functionality after spinal cord injury. Neurorehabil Neural Repair. 2012; 26(2): 188–196.
  8. Dobkin BH, Harkema S, Requejo P, et al. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil. 1995; 9(4): 183–190.
  9. Oxford Textbook of Neurorehabilitation. 2015.
  10. DIETZ V, QUINTERN J, BERGER W. ELECTROPHYSIOLOGICAL STUDIES OF GAIT IN SPASTICITY AND RIGIDITY. Brain. 1981; 104(3): 431–449.
  11. Dietz V, Müller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002; 125(Pt 12): 2626–2634.
  12. Sczesny-Kaiser M, Höffken O, Aach M, et al. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil. 2015; 12: 68.
  13. Humanes-Valera D, Aguilar J, Foffani G. Reorganization of the intact somatosensory cortex immediately after spinal cord injury. PLoS One. 2013; 8(7): e69655.
  14. Henderson LA, Gustin SM, Macey PM, et al. Functional Reorganization of the Brain in Humans Following Spinal Cord Injury: Evidence for Underlying Changes in Cortical Anatomy. Journal of Neuroscience. 2011; 31(7): 2630–2637.
  15. Jurkiewicz MT, Mikulis DJ, McIlroy WE, et al. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair. 2007; 21(6): 527–538.
  16. Topka H, Cohen LG, Cole RA, et al. Reorganization of corticospinal pathways following spinal cord injury. Neurology. 1991; 41(8): 1276–1283.
  17. Winchester P, McColl R, Querry R, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005; 19(4): 313–324.
  18. Masiero S, Poli P, Rosati G, et al. The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices. 2014; 11(2): 187–198.
  19. Tefertiller C, Pharo B, Evans N, et al. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011; 48(4): 387–416.
  20. Craig LE, Wu O, Bernhardt J, et al. Stroke rehabilitation. Lancet. 2011; 377(9778): 1693–1702.
  21. Morone G, Bragoni M, Iosa M, et al. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Neurorehabil Neural Repair. 2011; 25(7): 636–644.
  22. Morone G, Iosa M, Bragoni M, et al. Who may have durable benefit from robotic gait training?: a 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke. 2012; 43(4): 1140–1142.
  23. Mehrholz J, Elsner B, Werner C, et al. Electromechanical-assisted training for walking after stroke: updated evidence. Stroke. 2013; 44(10): e127–e128.
  24. Swinnen E, Beckwée D, Meeusen R, et al. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Top Stroke Rehabil. 2014; 21(2): 87–100.
  25. Stein J, Bishop L, Stein DJ, et al. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Am J Phys Med Rehabil. 2014; 93(11): 987–994.
  26. Fisahn C, Aach M, Jansen O, et al. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Global Spine J. 2016; 6(8): 822–841.
  27. Benito-Penalva J, Edwards DJ, Opisso E, et al. European Multicenter Study about Human Spinal Cord Injury Study Group. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch Phys Med Rehabil. 2012; 93(3): 404–412.
  28. Nam KiY, Kim HJ, Kwon BS, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil. 2017; 14(1): 24.
  29. Shin JiC, Kim JiY, Park HK, et al. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Ann Rehabil Med. 2014; 38(6): 719–725.
  30. Kozlowski AJ, Bryce TN, Dijkers MP. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil. 2015; 21(2): 110–121.
  31. Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005; 86(4): 672–680.
  32. Nitschke J, Kuhn D, Fisher K, et al. Comparison of the usability of the ReWalk, Ekso and HAL exoskeletons in the clinical setting. Ortopaedie Technik. 2014; 9: 22–26.
  33. Louie DR, Eng JJ, Lam T, et al. Spinal Cord Injury Research Evidence (SCIRE) Research Team. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil. 2015; 12: 82.
  34. Stampacchia G, Rustici A, Bigazzi S, et al. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation. 2016; 39(2): 277–283.
  35. Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Med Devices (Auckl). 2016; 9: 455–466.
  36. Mayr A, Kofler M, Quirbach E, et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007; 21(4): 307–314.
  37. Thoumie P, Lamotte D, Cantalloube S, et al. Motor determinants of gait in 100 ambulatory patients with multiple sclerosis. Mult Scler. 2005; 11(4): 485–491.
  38. Pompa A, Morone G, Iosa M, et al. Does robot-assisted gait training improve ambulation in highly disabled multiple sclerosis people? A pilot randomized control trial. Mult Scler. 2017; 23(5): 696–703.
  39. Gandolfi M, Geroin C, Picelli A, et al. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 2014; 8: 318.
  40. Straudi S, Fanciullacci C, Martinuzzi C, et al. The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial. Mult Scler. 2016; 22(3): 373–384.
  41. Swinnen E, Beckwée D, Pinte D, et al. Treadmill training in multiple sclerosis: can body weight support or robot assistance provide added value? A systematic review. Mult Scler Int. 2012; 2012: 240274.
  42. Straudi S, Manfredini F, Lamberti N, et al. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Trials. 2017; 18(1): 88.
  43. Galli M, Cimolin V, De Pandis MF, et al. Robot-assisted gait training versus treadmill training in patients with Parkinson's disease: a kinematic evaluation with gait profile score. Funct Neurol. 2016 [Epub ahead of print]; 31(3): 1–8.
  44. Freivogel S, Mehrholz J, Husak-Sotomayor T, et al. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008; 22(7-8): 625–632.
  45. Esquenazi A, Lee S, Packel AT, et al. A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. PM R. 2013; 5(4): 280–290.
  46. Capek KRU. R. (Rossum Universal Robots). CreateSpace Independent Publishing. ; 2015.
  47. Fundamentals of robotics: linking perception to action. Singapore-MIT Alliance & Nanyang Technological University. : Singapore.
  48. Van Peppen RPS, Kwakkel G, Wood-Dauphinee S, et al. The impact of physical therapy on functional outcomes after stroke: what's the evidence? Clin Rehabil. 2004; 18(8): 833–862.
  49. Thomas LH, French B, Coupe J, et al. Repetitive Task Training for Improving Functional Ability After Stroke: A Major Update of a Cochrane Review. Stroke. 2017; 48(4): e102–e103.
  50. Calabrò RS, Cacciola A, Bertè F, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016; 37(4): 503–514.
  51. Dietz V. Locomotor Training in Paraplegic Patients. Perspectives of Motor Behavior and Its Neural Basis. 1997: 57–64.
  52. Hussain S, Xie SQ, Jamwal PK, et al. An intrinsically compliant robotic orthosis for treadmill training. Med Eng Phys. 2012; 34(10): 1448–1453.
  53. Stegall P, Winfree K, Zanotto D, et al. Rehabilitation Exoskeleton Design: Exploring the Effect of the Anterior Lunge Degree of Freedom. IEEE Transactions on Robotics. 2013; 29(4): 838–846.
  54. Duschau-Wicke A, Caprez A, Riener R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil. 2010; 7: 43.
  55. Moreh E, Meiner Z, Neeb M, et al. Spinal decompression sickness presenting as partial Brown-Sequard syndrome and treated with robotic-assisted body-weight support treadmill training. J Rehabil Med. 2009; 41(1): 88–89.
  56. Ustinova K, Chernikova L, Bilimenko A, et al. Effect of robotic locomotor training in an individual with Parkinson's disease: a case report. Disabil Rehabil Assist Technol. 2011; 6(1): 77–85.
  57. Calabrò RS, De Luca R, Leo A, et al. Lokomat training in vascular dementia: motor improvement and beyond! Aging Clin Exp Res. 2015; 27(6): 935–937.
  58. Borggraefe I, Schaefer JS, Klaiber M, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010; 14(6): 496–502.
  59. Schwartz I, Sajin A, Moreh E, et al. Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult Scler. 2012; 18(6): 881–890.
  60. Straudi S, Benedetti MG, Venturini E, et al. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation. 2013; 33(4): 555–563.
  61. Gandolfi M, Geroin C, Picelli A, et al. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 2014; 8: 318.
  62. Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil. 2014; 11: 167.
  63. Central Nervous System (CNS). Encyclopedia of Neuroscience. : 619–619.
  64. Fisher S, Lucas L, Thrasher TA. Robot-assisted gait training for patients with hemiparesis due to stroke. Top Stroke Rehabil. 2011; 18(3): 269–276.
  65. Mantone J. Getting a leg up? Rehab patients get an assist from devices such as HealthSouth's AutoAmbulator, but the robots' clinical benefits are still in doubt. Mod Healthc. 2006; 36(7): 58–60.
  66. Fleerkotte BM, Koopman B, Buurke JH, et al. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil. 2014; 11: 26.
  67. Koopman B, van Asseldonk EHF, van der Kooij H. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil. 2013; 10: 3.
  68. Khanna I, Roy A, Rodgers MM, et al. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil. 2010; 7: 23.
  69. Agrawal SK, Banala SK, Fattah A, et al. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2007; 15(3): 410–420.
  70. Banala SK, Agrawal SK, Scholz JP. Novel Gait Adaptation and Neuromotor Training Results Using an Active Leg Exoskeleton. IEEE/ASME Transactions on Mechatronics. 2010; 15(2): 216–225.
  71. Banala SK, Kim SH, Agrawal SK, et al. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009; 17(1): 2–8.
  72. Hussain S. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects. NeuroRehabilitation. 2014; 35(4): 701–709.
  73. Dias D, Laíns J, Pereira A, et al. Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys. 2007; 43(4): 499–504.
  74. Peurala SH, Tarkka IM, Pitkänen K, et al. The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Arch Phys Med Rehabil. 2005; 86(8): 1557–1564.
  75. Iosa M, Morone G, Bragoni M, et al. Driving electromechanically assisted Gait Trainer for people with stroke. J Rehabil Res Dev. 2011; 48(2): 135–146.
  76. Picelli A, Melotti C, Origano F, et al. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson's disease: a randomized controlled trial. Parkinsonism Relat Disord. 2013; 19(6): 605–610.
  77. Picelli A, Melotti C, Origano F, et al. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial. Neurorehabil Neural Repair. 2012; 26(4): 353–361.
  78. Picelli A, Melotti C, Origano F, et al. Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial. Parkinsonism Relat Disord. 2012; 18(8): 990–993.
  79. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000; 37(6): 701–708.
  80. Hesse S, Sarkodie-Gyan T, Uhlenbrock D. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects. Biomed Tech (Berl). 1999; 44(7-8): 194–201.
  81. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010; 7: 30.
  82. Stoller O, Schindelholz M, Bichsel L, et al. Cardiopulmonary responses to robotic end-effector-based walking and stair climbing. Med Eng Phys. 2014; 36(4): 425–431.
  83. Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012; 91(11): 911–921.
  84. Fineberg DB, Asselin P, Harel NY, et al. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J Spinal Cord Med. 2013; 36(4): 313–321.
  85. Nooijen CFJ, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil. 2009; 6: 36.
  86. Nilsson L, Carlsson J, Danielsson A, et al. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. 2001; 15(5): 515–527.
  87. Wall A, Borg J, Palmcrantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review. Front Syst Neurosci. 2015; 9: 48.
  88. Mirelman A, Patritti BL, Bonato P, et al. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture. 2010; 31(4): 433–437.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest VM Media Group sp. z o.o., Grupa Via Medica, ul. Świętokrzyska 73, 80–180 Gdańsk

tel. +48 58 320 94 94, faks +48 58 320 94 60, e-mail: viamedica@viamedica.pl