Vol 80, Supp. IV (2022): Zeszyty Edukacyjne 4/2022
Wytyczne ESC
Published online: 2023-06-15

open access

Page views 177
Article views/downloads 877
Get Citation

Connect on Social Media

Connect on Social Media

Wytyczne ESC 2022 dotyczące postępowania u pacjentów z komorowymi zaburzeniami rytmu serca oraz zapobiegania nagłej śmierci sercowej. Suplement

Katja Zeppenfeld, Jacob Tfelt-Hansen, Marta de Riva, Bo Gregers Winkel, Elijah R. Behr, Nico A. Blom, Philippe Charron, Domenico Corrado, Nikolaos Dagres, Christian de Chillou, Lars Eckardt, Tim Friede, Kristina H. Hauga, Mélèze Hocini, Pier D. Lambiase, Eloi Marijon, Jose L. Merino, Petr Peichl, Silvia G. Priori, Tobias Reichlin, Jeanette Schulz-Menger, Christian Sticherling, Stylianos Tzeis, Maurizio Volterrani
DOI: 10.33963/v.kp.92564

Abstract

Not available

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Hallstrom AP, Ornato JP, Weisfeldt M, et al. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med. 2004; 351(7): 637–646.
  2. Nakashima T, Noguchi T, Tahara Y, et al. Public-access defibrillation and neurological outcomes in patients with out-of-hospital cardiac arrest in Japan: a population-based cohort study. Lancet. 2019; 394(10216): 2255–2262.
  3. Pollack RA, Brown SP, Rea T, et al. Impact of bystander automated external defibrillator use on survival and functional outcomes in shockable observed public cardiac arrests. Circulation. 2018; 137(20): 2104–2113.
  4. Kitamura T, Kiyohara K, Sakai T, et al. Public-access defibrillation and out-of-hospital cardiac arrest in Japan. N Engl J Med. 2016; 375(17): 1649–1659.
  5. Hasselqvist-Ax I, Riva G, Herlitz J, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015; 372(24): 2307–2315.
  6. Kragholm K, Wissenberg M, Mortensen RN, et al. Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest. N Engl J Med. 2017; 376(18): 1737–1747.
  7. Fordyce CB, Hansen CM, Kragholm K, et al. Association of public health initiatives with outcomes for out-of-hospital cardiac arrest at home and in public locations. JAMA Cardiol. 2017; 2(11): 1226–1235.
  8. Karam N, Narayanan K, Bougouin W, et al. Major regional differences in Automated External Defibrillator placement and Basic Life Support training in France: Further needs for coordinated implementation. Resuscitation. 2017; 118: 49–54.
  9. Ringh M, Rosenqvist M, Hollenberg J, et al. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest. N Engl J Med. 2015; 372(24): 2316–2325.
  10. Stroop R, Kerner T, Strickmann B, et al. Mobile phone-based alerting of CPR-trained volunteers simultaneously with the ambulance can reduce the resuscitation-free interval and improve outcome after out-of-hospital cardiac arrest: A German, population-based cohort study. Resuscitation. 2020; 147: 57–64.
  11. Lee SY, Shin SDo, Lee YuJ, et al. Text message alert system and resuscitation outcomes after out-of-hospital cardiac arrest: A before-and-after population-based study. Resuscitation. 2019; 138: 198–207.
  12. Bagnall RD, Weintraub RG, Ingles J, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016; 374(25): 2441–2452.
  13. Lahrouchi N, Raju H, Lodder EM, et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol. 2017; 69(17): 2134–2145.
  14. Conte G, Wilde A, Behr ER, et al. Importance of dedicated units for the management of patients with inherited arrhythmia syndromes. Circ Genom Precis Med. 2021; 14(2): e003313.
  15. Nucifora G, Muser D, Masci PG, et al. Prevalence and prognostic value of concealed structural abnormalities in patients with apparently idiopathic ventricular arrhythmias of left versus right ventricular origin: a magnetic resonance imaging study. Circ Arrhythm Electrophysiol. 2014; 7(3): 456–462.
  16. Muser D, Nucifora G, Muser D, et al. Prognostic value of nonischemic ringlike left ventricular scar in patients with apparently idiopathic nonsustained ventricular arrhythmias. Circulation. 2021; 143(14): 1359–1373.
  17. Corrado D, Basso C, Leoni L, et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2005; 111(23): 3042–3050.
  18. Casella M, Dello Russo A, Bergonti M, et al. Diagnostic yield of electroanatomic voltage mapping in guiding endomyocardial biopsies. Circulation. 2020; 142(13): 1249–1260.
  19. Haanschoten DM, Adiyaman A, 't Hart NA, et al. Value of 3D mapping-guided endomyocardial biopsy in cardiac sarcoidosis: Case series and narrative review on the value of electro-anatomic mapping-guided endomyocardial biopsies. Eur J Clin Invest. 2021; 51(4): e13497.
  20. Venlet J, Piers SRD, Jongbloed JDH, et al. Isolated subepicardial right ventricular outflow tract scar in athletes with ventricular tachycardia. J Am Coll Cardiol. 2017; 69(5): 497–507.
  21. Waldmann V, Karam N, Bougouin W, et al. Burden of coronary artery disease as a cause of sudden cardiac arrest in the Young. J Am Coll Cardiol. 2019; 73(16): 2118–2120.
  22. Giudicessi JR, Ackerman MJ. Exercise testing oversights underlie missed and delayed diagnosis of catecholaminergic polymorphic ventricular tachycardia in young sudden cardiac arrest survivors. Heart Rhythm. 2019; 16(8): 1232–1239.
  23. Ingles J, Lind JM, Phongsavan P, et al. Psychosocial impact of specialized cardiac genetic clinics for hypertrophic cardiomyopathy. Genet Med. 2008; 10(2): 117–120.
  24. Chelly J, Mongardon N, Dumas F, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation. 2012; 83(12): 1444–1450.
  25. Tseng ZH, Olgin JE, Vittinghoff E, et al. Prospective countywide surveillance and autopsy characterization of sudden cardiac death: POST SCD study. Circulation. 2018; 137(25): 2689–2700.
  26. Sweeney MO, Ruetz LL, Belk P, et al. Bradycardia pacing-induced short-long-short sequences at the onset of ventricular tachyarrhythmias: a possible mechanism of proarrhythmia? J Am Coll Cardiol. 2007; 50(7): 614–622.
  27. Tseng ZH, Hayward RM, Clark NM, et al. Sudden death in patients with cardiac implantable electronic devices. JAMA Intern Med. 2015; 175(8): 1342–1350.
  28. Curcio A, Mazzanti A, Bloise R, et al. Clinical presentation and outcome of brugada syndrome diagnosed with the new 2013 criteria. J Cardiovasc Electrophysiol. 2016; 27(8): 937–943.
  29. Krahn AD, Healey JS, Simpson CS, et al. Systematic assessment of patients with unexplained cardiac arrest: Cardiac Arrest Survivors With Preserved Ejection Fraction Registry (CASPER). Circulation. 2009; 120(4): 278–285.
  30. Rodrigues P, Joshi A, Williams H, et al. Diagnosis and prognosis in sudden cardiac arrest survivors without coronary artery disease: utility of a clinical approach using cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2017; 10(12): e006709.
  31. Waldmann V, Bougouin W, Karam N, et al. Coronary vasospasm-related sudden cardiac arrest in the community. J Am Coll Cardiol. 2018; 72(7): 814–815.
  32. Karam N, Jabre P, Narayanan K, et al. Psychological support and medical screening of first-degree relatives of sudden cardiac arrest victims. JACC Clin Electrophysiol. 2020; 6(5): 586–587.
  33. Tan HL, Hofman N, van Langen IM, et al. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation. 2005; 112(2): 207–213.
  34. Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med. 2019; 380(15): 1397–1407.
  35. Kern KB, Radsel P, Jentzer JC, et al. Randomized pilot clinical trial of early coronary angiography versus no early coronary angiography after cardiac arrest without ST-segment elevation: the PEARL study. Circulation. 2020; 142(21): 2002–2012.
  36. Desch S, Freund A, Akin I, et al. Angiography after out-of-hospital cardiac arrest without st-segment elevation. N Engl J Med. 2021; 385(27): 2544–2553.
  37. Arnaout M, Mongardon N, Deye N, et al. Out-of-hospital cardiac arrest from brain cause: epidemiology, clinical features, and outcome in a multicenter cohort. Crit Care Med. 2015; 43(2): 453–460.
  38. Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011; 8(11): 1698–1704.
  39. Perrin MJ, Angaran P, Laksman Z, et al. Exercise testing in asymptomatic gene carriers exposes a latent electrical substrate of arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2013; 62(19): 1772–1779.
  40. Waldmann V, Bougouin W, Karam N, et al. Characteristics and clinical assessment of unexplained sudden cardiac arrest in the real-world setting: focus on idiopathic ventricular fibrillation. Eur Heart J. 2018; 39(21): 1981–1987.
  41. Nakao K, Ohgushi M, Yoshimura M, et al. Hyperventilation as a specific test for diagnosis of coronary artery spasm. Am J Cardiol. 1997; 80(5): 545–549.
  42. Stecker EC, Reinier K, Marijon E, et al. Public health burden of sudden cardiac death in the United States. Circ Arrhythm Electrophysiol. 2014; 7(2): 212–217.
  43. Winkel BoG, Holst AG, Theilade J, et al. Nationwide study of sudden cardiac death in persons aged 1-35 years. Eur Heart J. 2011; 32(8): 983–990.
  44. van der Werf C, Hofman N, Tan HL, et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in the Netherlands. Heart Rhythm. 2010; 7(10): 1383–1389.
  45. de Noronha SV, Behr ER, Papadakis M, et al. The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europace. 2014; 16(6): 899–907.
  46. Kjerrumgaard A, Jacobsen EM, Hansen BL, et al. Diagnostic yield in victims of sudden cardiac death and their relatives. Europace. 2020; 22(6): 964–971.
  47. Bjune T, Risgaard B, Kruckow L, et al. Post-mortem toxicology in young sudden cardiac death victims: a nationwide cohort study. Europace. 2018; 20(4): 614–621.
  48. Allan KS, Morrison LJ, Pinter A, et al. "Presumed cardiac" arrest in children and young adults: A misnomer? Resuscitation. 2017; 117: 73–79.
  49. Lahrouchi N, Raju H, Lodder EM, et al. The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur J Hum Genet. 2020; 28(1): 17–22.
  50. Tester DJ, Medeiros-Domingo A, Will ML, et al. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc. 2012; 87(6): 524–539.
  51. Papadakis M, Raju H, Behr ER, et al. Sudden cardiac death with autopsy findings of uncertain significance: potential for erroneous interpretation. Circ Arrhythm Electrophysiol. 2013; 6(3): 588–596.
  52. Jacobsen EM, Hansen BL, Kjerrumgaard A, et al. Diagnostic yield and long-term outcome of nonischemic sudden cardiac arrest survivors and their relatives: Results from a tertiary referral center. Heart Rhythm. 2020; 17(10): 1679–1686.
  53. Kjerrumgaard A, Jacobsen EM, Hansen BL, et al. Diagnostic findings and follow-up outcomes in relatives to young non-autopsied sudden death victims. Int J Cardiol. 2020; 318: 61–66.
  54. Shanks GW, Tester DJ, Ackerman JP, et al. Importance of variant interpretation in whole-exome molecular autopsy: population-based case series. Circulation. 2018; 137(25): 2705–2715.
  55. Narula N, Tester DJ, Paulmichl A, et al. Post-mortem whole exome sequencing with gene-specific analysis for autopsy-negative sudden unexplained death in the young: a case series. Pediatr Cardiol. 2015; 36(4): 768–778.
  56. Wong LCH, Roses-Noguer F, Till JA, et al. Cardiac evaluation of pediatric relatives in sudden arrhythmic death syndrome: a 2-center experience. Circ Arrhythm Electrophysiol. 2014; 7(5): 800–806.
  57. Behr E, Wood DA, Wright M, et al. Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome. Lancet. 2003; 362(9394): 1457–1459.
  58. Behr ER, Dalageorgou C, Christiansen M, et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur Heart J. 2008; 29(13): 1670–1680.
  59. Papadakis M, Papatheodorou E, Mellor G, et al. The diagnostic yield of Brugada syndrome after sudden death with normal autopsy. J Am Coll Cardiol. 2018; 71(11): 1204–1214.
  60. van der Werf C, Stiekema L, Tan HL, et al. Low rate of cardiac events in first-degree relatives of diagnosis-negative young sudden unexplained death syndrome victims during follow-up. Heart Rhythm. 2014; 11(10): 1728–1732.
  61. Gibbs C, Thalamus J, Heldal K, et al. Predictors of mortality in high-risk patients with QT prolongation in a community hospital. Europace. 2018; 20(FI1): f99–f107.
  62. Simpson TF, Salazar JW, Vittinghoff E, et al. Association of QT-prolonging medications with risk of autopsy-defined causes of sudden death. JAMA Intern Med. 2020; 180(5): 698–706.
  63. Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv. 2010; 3(3): 200–207.
  64. Schupp T, Behnes M, Zworowsky Mv, et al. Hypokalemia but not hyperkalemia is associated with recurrences of ventricular tachyarrhythmias in ICD recipients. Clin Lab. 2020; 66(3).
  65. Wyse DG, Friedman PL, Brodsky MA, et al. Life-threatening ventricular arrhythmias due to transient or correctable causes: high risk for death in follow-up. J Am Coll Cardiol. 2001; 38(6): 1718–1724.
  66. Ladejobi A, Pasupula DK, Adhikari S, et al. Implantable defibrillator therapy in cardiac arrest survivors with a reversible cause. Circ Arrhythm Electrophysiol. 2018; 11(3): e005940.
  67. Gupta A, Pasupula DK, Bhonsale A, et al. Implantable cardioverter-defibrillator therapy in device recipients who survived a cardiac arrest associated with a reversible cause. J Cardiovasc Electrophysiol. 2018; 29(10): 1413–1417.
  68. Ortiz M, Martín A, Arribas F, et al. Randomized comparison of intravenous procainamide vs. intravenous amiodarone for the acute treatment of tolerated wide QRS tachycardia: the PROCAMIO study. Eur Heart J. 2017; 38(17): 1329–1335.
  69. Patel KK, Spertus JA, Khariton Y, et al. Association between prompt defibrillation and epinephrine treatment with long-term survival after in-hospital cardiac arrest. Circulation. 2018; 137(19): 2041–2051.
  70. Buxton AE, Marchlinski FE, Doherty JU, et al. Repetitive, monomorphic ventricular tachycardia: clinical and electrophysiologic characteristics in patients with and patients without organic heart disease. Am J Cardiol. 1984; 54(8): 997–1002.
  71. Griffith MJ, Garratt CJ, Rowland E, et al. Effects of intravenous adenosine on verapamil-sensitive "idiopathic" ventricular tachycardia. Am J Cardiol. 1994; 73(11): 759–764.
  72. Marill KA, Wolfram S, Desouza IS, et al. Adenosine for wide-complex tachycardia: efficacy and safety. Crit Care Med. 2009; 37(9): 2512–2518.
  73. Gill JS, Mehta D, Ward DE, et al. Efficacy of flecainide, sotalol, and verapamil in the treatment of right ventricular tachycardia in patients without overt cardiac abnormality. Br Heart J. 1992; 68(4): 392–397.
  74. Manz M, Mletzko R, Jung W, et al. Electrophysiological and haemodynamic effects of lidocaine and ajmaline in the management of sustained ventricular tachycardia. Eur Heart J. 1992; 13(8): 1123–1128.
  75. Buxton AE, Marchlinski FE, Doherty JU, et al. Hazards of intravenous verapamil for sustained ventricular tachycardia. Am J Cardiol. 1987; 59(12): 1107–1110.
  76. Rankin AC, Rae AP, Cobbe SM. Misuse of intravenous verapamil in patients with ventricular tachycardia. Lancet. 1987; 2(8557): 472–474.
  77. Chatzidou S, Kontogiannis C, Tsilimigras DI, et al. Propranolol versus metoprolol for treatment of electrical storm in patients with implantable cardioverter-defibrillator. J Am Coll Cardiol. 2018; 71(17): 1897–1906.
  78. Connolly SJ, Dorian P, Roberts RS, et al. Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: the OPTIC Study: a randomized trial. JAMA. 2006; 295(2): 165–171.
  79. Tzivoni D, Banai S, Schuger C, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988; 77(2): 392–397.
  80. Carbucicchio C, Santamaria M, Trevisi N, et al. Catheter ablation for the treatment of electrical storm in patients with implantable cardioverter-defibrillators: short- and long-term outcomes in a prospective single-center study. Circulation. 2008; 117(4): 462–469.
  81. Vergara P, Tung R, Vaseghi M, et al. Successful ventricular tachycardia ablation in patients with electrical storm reduces recurrences and improves survival. Heart Rhythm. 2018; 15(1): 48–55.
  82. Martins RP, Urien JM, Barbarot N, et al. Effectiveness of deep sedation for patients with intractable electrical storm refractory to antiarrhythmic drugs. Circulation. 2020; 142(16): 1599–1601.
  83. Haïssaguerre M, Shah DC, Jaïs P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet. 2002; 359(9307): 677–678.
  84. Komatsu Y, Hocini M, Nogami A, et al. Catheter ablation of refractory ventricular fibrillation storm after myocardial infarction. Circulation. 2019; 139(20): 2315–2325.
  85. Knecht S, Sacher F, Wright M, et al. Long-term follow-up of idiopathic ventricular fibrillation ablation: a multicenter study. J Am Coll Cardiol. 2009; 54(6): 522–528.
  86. Viskin S, Chorin E, Viskin D, et al. Quinidine-responsive polymorphic ventricular tachycardia in patients with coronary heart disease. Circulation. 2019; 139(20): 2304–2314.
  87. Viskin S, Hochstadt A, Chorin E, et al. Quinidine-responsive out-of-hospital polymorphic ventricular tachycardia in patients with coronary heart disease. Europace. 2020; 22(2): 265–273.
  88. Fudim M, Boortz-Marx R, Ganesh A, et al. Stellate ganglion blockade for the treatment of refractory ventricular arrhythmias: A systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2017; 28(12): 1460–1467.
  89. Vaseghi M, Barwad P, Malavassi Corrales FJ, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol. 2017; 69(25): 3070–3080.
  90. Vaseghi M, Gima J, Kanaan C, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm. 2014; 11(3): 360–366.
  91. Le Pennec-Prigent S, Flecher E, Auffret V, et al. Effectiveness of extracorporeal life support for patients with cardiogenic shock due to intractable arrhythmic storm. Crit Care Med. 2017; 45(3): e281–e289.
  92. Connolly SJ, Gent M, Roberts RS, et al. Canadian implantable defibrillator study (CIDS) : a randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation. 2000; 101(11): 1297–1302.
  93. Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997; 337(22): 1576–1583.
  94. Kuck KH, Cappato R, Siebels J, et al. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest : the Cardiac Arrest Study Hamburg (CASH). Circulation. 2000; 102(7): 748–754.
  95. Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg . Canadian Implantable Defibrillator Study. Eur Heart J. 2000; 21(24): 2071–2078.
  96. Knops RE, Olde Nordkamp LRA, Delnoy PPHM, et al. Subcutaneous or transvenous defibrillator therapy. N Engl J Med. 2020; 383(6): 526–536.
  97. Cleland JGF, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005; 352(15): 1539–1549.
  98. Garcia R, Combes N, Defaye P, et al. Wearable cardioverter-defibrillator in patients with a transient risk of sudden cardiac death: the WEARIT-France cohort study. Europace. 2021; 23(1): 73–81.
  99. Olgin JE, Pletcher MJ, Vittinghoff E, et al. Wearable cardioverter-defibrillator after myocardial infarction. N Engl J Med. 2018; 379(13): 1205–1215.
  100. Scott PA, Silberbauer J, McDonagh TA, et al. Impact of prolonged implantable cardioverter-defibrillator arrhythmia detection times on outcomes: a meta-analysis. Heart Rhythm. 2014; 11(5): 828–835.
  101. Tan VH, Wilton SB, Kuriachan V, et al. Impact of programming strategies aimed at reducing nonessential implantable cardioverter defibrillator therapies on mortality: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol. 2014; 7(1): 164–170.
  102. Saeed M, Hanna I, Robotis D, et al. Programming implantable cardioverter-defibrillators in patients with primary prevention indication to prolong time to first shock: results from the PROVIDE study. J Cardiovasc Electrophysiol. 2014; 25(1): 52–59.
  103. Barsheshet A, Moss AJ, McNitt S, et al. Long-term implications of cumulative right ventricular pacing among patients with an implantable cardioverter-defibrillator. Heart Rhythm. 2011; 8(2): 212–218.
  104. Wilkoff BL, Kudenchuk PJ, Buxton AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002; 288(24): 3115–3123.
  105. Olshansky B, Day JD, Moore S, et al. Is dual-chamber programming inferior to single-chamber programming in an implantable cardioverter-defibrillator? Results of the INTRINSIC RV (Inhibition of Unnecessary RV Pacing With AVSH in ICDs) study. Circulation. 2007; 115(1): 9–16.
  106. Gasparini M, Proclemer A, Klersy C, et al. Effect of long-detection interval vs standard-detection interval for implantable cardioverter-defibrillators on antitachycardia pacing and shock delivery: the ADVANCE III randomized clinical trial. JAMA. 2013; 309(18): 1903–1911.
  107. Moss AJ, Schuger C, Beck CA, et al. Reduction in inappropriate therapy and mortality through ICD programming. N Engl J Med. 2012; 367(24): 2275–2283.
  108. Wilkoff BL, Ousdigian KT, Sterns LD, et al. A comparison of empiric to physician-tailored programming of implantable cardioverter-defibrillators: results from the prospective randomized multicenter EMPIRIC trial. J Am Coll Cardiol. 2006; 48(2): 330–339.
  109. Wathen MS, DeGroot PJ, Sweeney MO, et al. Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators: Pacing Fast Ventricular Tachycardia Reduces Shock Therapies (PainFREE Rx II) trial results. Circulation. 2004; 110(17): 2591–2596.
  110. Wilkoff BL, Williamson BD, Stern RS, et al. Strategic programming of detection and therapy parameters in implantable cardioverter-defibrillators reduces shocks in primary prevention patients: results from the PREPARE (Primary Prevention Parameters Evaluation) study. J Am Coll Cardiol. 2008; 52(7): 541–550.
  111. Ploux S, Swerdlow CD, Strik M, et al. Towards eradication of inappropriate therapies for ICD lead failure by combining comprehensive remote monitoring and lead noise alerts. J Cardiovasc Electrophysiol. 2018; 29(8): 1125–1134.
  112. Ellenbogen KA, Gunderson BD, Stromberg KD, et al. Performance of lead integrity alert to assist in the clinical diagnosis of implantable cardioverter defibrillator lead failures: analysis of different implantable cardioverter defibrillator leads. Circ Arrhythm Electrophysiol. 2013; 6(6): 1169–1177.
  113. Swerdlow CD, Gunderson BD, Ousdigian KT, et al. Downloadable software algorithm reduces inappropriate shocks caused by implantable cardioverter-defibrillator lead fractures: a prospective study. Circulation. 2010; 122(15): 1449–1455.
  114. Guédon-Moreau L, Lacroix D, Sadoul N, et al. A randomized study of remote follow-up of implantable cardioverter defibrillators: safety and efficacy report of the ECOST trial. Eur Heart J. 2013; 34(8): 605–614.
  115. Gulizia MM, Piraino L, Scherillo M, et al. A randomized study to compare ramp versus burst antitachycardia pacing therapies to treat fast ventricular tachyarrhythmias in patients with implantable cardioverter defibrillators: the PITAGORA ICD trial. Circ Arrhythm Electrophysiol. 2009; 2(2): 146–153.
  116. Gold MR, Lambiase PD, El-Chami MF, et al. Primary results from the understanding outcomes with the S-ICD in primary prevention patients with low ejection fraction (UNTOUCHED) trial. Circulation. 2021; 143(1): 7–17.
  117. Mesquita J, Cavaco D, Ferreira A, et al. Effectiveness of subcutaneous implantable cardioverter-defibrillators and determinants of inappropriate shock delivery. Int J Cardiol. 2017; 232: 176–180.
  118. Gold MR, Weiss R, Theuns DA, et al. Use of a discrimination algorithm to reduce inappropriate shocks with a subcutaneous implantable cardioverter-defibrillator. Heart Rhythm. 2014; 11(8): 1352–1358.
  119. Gilliam FR, Hayes DL, Boehmer JP, et al. Real world evaluation of dual-zone ICD and CRT-D programming compared to single-zone programming: the ALTITUDE REDUCES study. J Cardiovasc Electrophysiol. 2011; 22(9): 1023–1029.
  120. Miyazaki S, Taniguchi H, Kusa S, et al. Catheter ablation of atrial tachyarrhythmias causing inappropriate implantable cardioverter-defibrillator shocks. Europace. 2015; 17(2): 289–294.
  121. Mainigi SK, Almuti K, Figueredo VM, et al. Usefulness of radiofrequency ablation of supraventricular tachycardia to decrease inappropriate shocks from implantable cardioverter-defibrillators. Am J Cardiol. 2012; 109(2): 231–237.
  122. Gasparini M, Kloppe A, Lunati M, et al. Atrioventricular junction ablation in patients with atrial fibrillation treated with cardiac resynchronization therapy: positive impact on ventricular arrhythmias, implantable cardioverter-defibrillator therapies and hospitalizations. Eur J Heart Fail. 2018; 20(10): 1472–1481.
  123. Kitamura T, Fukamizu S, Kawamura I, et al. Long-term efficacy of catheter ablation for paroxysmal atrial fibrillation in patients with Brugada syndrome and an implantable cardioverter-defibrillator to prevent inappropriate shock therapy. Heart Rhythm. 2016; 13(7): 1455–1459.
  124. Berg SK, Rasmussen TB, Herning M, et al. Cognitive behavioural therapy significantly reduces anxiety in patients with implanted cardioverter defibrillator compared with usual care: Findings from the Screen-ICD randomised controlled trial. Eur J Prev Cardiol. 2020; 27(3): 258–268.
  125. Schulz SM, Ritter O, Zniva R, et al. Efficacy of a web-based intervention for improving psychosocial well-being in patients with implantable cardioverter-defibrillators: the randomized controlled ICD-FORUM trial. Eur Heart J. 2020; 41(11): 1203–1211.
  126. van den Broek KC, Tekle FB, Habibović M, et al. Emotional distress, positive affect, and mortality in patients with an implantable cardioverter defibrillator. Int J Cardiol. 2013; 165(2): 327–332.
  127. Thylén I, Moser DK, Strömberg A, et al. Concerns about implantable cardioverter-defibrillator shocks mediate the relationship between actual shocks and psychological distress. Europace. 2016; 18(6): 828–835.
  128. Hauptman PJ, Chibnall JT, Guild C, et al. Patient perceptions, physician communication, and the implantable cardioverter-defibrillator. JAMA Intern Med. 2013; 173(7): 571–577.
  129. Cikes M, Jakus N, Claggett B, et al. Cardiac implantable electronic devices with a defibrillator component and all-cause mortality in left ventricular assist device carriers: results from the PCHF-VAD registry. Eur J Heart Fail. 2019; 21(9): 1129–1141.
  130. Makki N, Mesubi O, Steyers C, et al. Meta-Analysis of the relation of ventricular arrhythmias to all-cause mortality after implantation of a left ventricular assist device. Am J Cardiol. 2015; 116(9): 1385–1390.
  131. Defaye P, Boveda S, Klug D, et al. Dual- vs. single-chamber defibrillators for primary prevention of sudden cardiac death: long-term follow-up of the Défibrillateur Automatique Implantable-Prévention Primaire registry. Europace. 2017; 19(9): 1478–1484.
  132. Dewland TA, Pellegrini CN, Wang Y, et al. Dual-chamber implantable cardioverter-defibrillator selection is associated with increased complication rates and mortality among patients enrolled in the NCDR implantable cardioverter-defibrillator registry. J Am Coll Cardiol. 2011; 58(10): 1007–1013.
  133. Chen BW, Liu Q, Wang Xu, et al. Are dual-chamber implantable cardioverter-defibrillators really better than single-chamber ones? A systematic review and meta-analysis. J Interv Card Electrophysiol. 2014; 39(3): 273–280.
  134. Epstein LM, Love CJ, Wilkoff BL, et al. Superior vena cava defibrillator coils make transvenous lead extraction more challenging and riskier. J Am Coll Cardiol. 2013; 61(9): 987–989.
  135. Stoevelaar R, Brinkman-Stoppelenburg A, van Driel AG, et al. Trends in time in the management of the implantable cardioverter defibrillator in the last phase of life: a retrospective study of medical records. Eur J Cardiovasc Nurs. 2019; 18(6): 449–457.
  136. Piccini JP, Hranitzky PM, Kilaru R, et al. Relation of mortality to failure to prescribe beta blockers acutely in patients with sustained ventricular tachycardia and ventricular fibrillation following acute myocardial infarction (from the VALsartan In Acute myocardial iNfarcTion trial [VALIANT] Registry). Am J Cardiol. 2008; 102(11): 1427–1432.
  137. Nademanee K, Taylor R, Bailey WE, et al. Treating electrical storm : sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation. 2000; 102(7): 742–747.
  138. Piccini JP, Schulte PJ, Pieper KS, et al. Antiarrhythmic drug therapy for sustained ventricular arrhythmias complicating acute myocardial infarction. Crit Care Med. 2011; 39(1): 78–83.
  139. Dorian P, Cass D, Schwartz B, et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N Engl J Med. 2002; 346(12): 884–890.
  140. Martí-Carvajal AJ, Simancas-Racines D, Anand V, et al. Prophylactic lidocaine for myocardial infarction. Cochrane Database Syst Rev. 2015(8): CD008553.
  141. Ahn JM, Lee KiH, Yoo SY, et al. Prognosis of variant angina manifesting as Aborted sudden cardiac death. J Am Coll Cardiol. 2016; 68(2): 137–145.
  142. Sueda S, Kohno H. Optimal medications and appropriate implantable cardioverter-defibrillator shocks in aborted sudden cardiac death due to coronary spasm. Intern Med. 2018; 57(10): 1361–1369.
  143. Rodríguez-Mañero M, Oloriz T, le Polain de Waroux JB, et al. Long-term prognosis of patients with life-threatening ventricular arrhythmias induced by coronary artery spasm. Europace. 2018; 20(5): 851–858.
  144. St John Sutton M, Pfeffer MA, Plappert T, et al. Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation. 1994; 89(1): 68–75.
  145. Søholm H, Lønborg J, Andersen MJ, et al. Repeated echocardiography after first ever ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention--is it necessary? Eur Heart J Acute Cardiovasc Care. 2015; 4(6): 528–536.
  146. Daubert MA, White JA, Al-Khalidi HR, et al. Cardiac remodeling after large ST-elevation myocardial infarction in the current therapeutic era. Am Heart J. 2020; 223: 87–97.
  147. Chew DS, Heikki H, Schmidt G, et al. Change in left ventricular ejection fraction following first myocardial infarction and outcome. JACC Clin Electrophysiol. 2018; 4(5): 672–682.
  148. Gatzoulis KA, Tsiachris D, Arsenos P, et al. Prognostic value of programmed ventricular stimulation for sudden death in selected high risk patients with structural heart disease and preserved systolic function. Int J Cardiol. 2014; 176(3): 1449–1451.
  149. Olshansky B, Hahn EA, Hartz VL, et al. Clinical significance of syncope in the electrophysiologic study versus electrocardiographic monitoring (ESVEM) trial. The ESVEM Investigators. Am Heart J. 1999; 137(5): 878–886.
  150. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002; 346(12): 877–883.
  151. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005; 352(3): 225–237.
  152. Buxton AE, Lee KL, Fisher JD, et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter unsustained tachycardia trial investigators. N Engl J Med. 1999; 341(25): 1882–1890.
  153. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med. 1991; 324(12): 781–788.
  154. Cairns JA, Connolly SJ, Roberts R, et al. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators. Lancet. 1997; 349(9053): 675–682.
  155. Julian DG, Camm AJ, Frangin G, et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. European Myocardial Infarct Amiodarone Trial Investigators. Lancet. 1997; 349(9053): 667–674.
  156. Sapp JL, Wells GA, Parkash R, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med. 2016; 375(2): 111–121.
  157. Pacifico A, Hohnloser SH, Williams JH, et al. Prevention of implantable-defibrillator shocks by treatment with sotalol. d,l-Sotalol implantable cardioverter-defibrillator study group. N Engl J Med. 1999; 340(24): 1855–1862.
  158. Maury P, Baratto F, Zeppenfeld K, et al. Radio-frequency ablation as primary management of well-tolerated sustained monomorphic ventricular tachycardia in patients with structural heart disease and left ventricular ejection fraction over 30%. Eur Heart J. 2014; 35(22): 1479–1485.
  159. Clemens M, Peichl P, Wichterle D, et al. Catheter ablation of ventricular tachycardia as the first-line therapy in patients with coronary artery disease and preserved left ventricular systolic function: long-term results. J Cardiovasc Electrophysiol. 2015; 26(10): 1105–1110.
  160. Reddy VY, Reynolds MR, Neuzil P, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med. 2007; 357(26): 2657–2665.
  161. Kuck KH, Schaumann A, Eckardt L, et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet. 2010; 375(9708): 31–40.
  162. Willems S, Tilz RR, Steven D, et al. Preventive or deferred ablation of ventricular tachycardia in patients with ischemic cardiomyopathy and implantable defibrillator (BERLIN VT): a multicenter randomized trial. Circulation. 2020; 141(13): 1057–1067.
  163. Kuck KH, Tilz RR, Deneke T, et al. Impact of substrate modification by catheter ablation on implantable cardioverter-defibrillator interventions in patients with unstable ventricular arrhythmias and coronary artery disease: results from the multicenter randomized controlled SMS (substrate modification study). Circ Arrhythm Electrophysiol. 2017; 10(3): e004422.
  164. Jegatheeswaran A, Devlin PJ, McCrindle BW, et al. Features associated with myocardial ischemia in anomalous aortic origin of a coronary artery: A Congenital Heart Surgeons' Society study. J Thorac Cardiovasc Surg. 2019; 158(3): 822–834.e3.
  165. Molossi S, Agrawal H, Mery CM, et al. Outcomes in anomalous aortic origin of a coronary artery following a prospective standardized approach. Circ Cardiovasc Interv. 2020; 13(2): e008445.
  166. Krasuski RA, Magyar D, Hart S, et al. Long-term outcome and impact of surgery on adults with coronary arteries originating from the opposite coronary cusp. Circulation. 2011; 123(2): 154–162.
  167. Jegatheeswaran A, Devlin PJ, Williams WG, et al. Outcomes after anomalous aortic origin of a coronary artery repair: A Congenital Heart Surgeons' Society Study. J Thorac Cardiovasc Surg. 2020; 160(3): 757–771.e5.
  168. Sharma N, Cortez D, Imundo J. High burden of premature ventricular contractions in structurally normal hearts: To worry or not in pediatric patients? Ann Noninvasive Electrocardiol. 2019; 24(6): e12663.
  169. Niwano S, Wakisaka Y, Niwano H, et al. Prognostic significance of frequent premature ventricular contractions originating from the ventricular outflow tract in patients with normal left ventricular function. Heart. 2009; 95(15): 1230–1237.
  170. Latchamsetty R, Yokokawa M, Morady F, et al. Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes. JACC Clin Electrophysiol. 2015; 1(3): 116–123.
  171. Ling Z, Liu Z, Su Li, et al. Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract: prospective randomized study. Circ Arrhythm Electrophysiol. 2014; 7(2): 237–243.
  172. Baksiene D, Sileikiene R, Sileikis V, et al. Idiopathic ventricular tachycardia in children: curative therapy with radiofrequency ablation. Medicina (Kaunas). 2007; 43(10): 803–807.
  173. Krittayaphong R, Sriratanasathavorn C, Dumavibhat C, et al. Electrocardiographic predictors of long-term outcomes after radiofrequency ablation in patients with right-ventricular outflow tract tachycardia. Europace. 2006; 8(8): 601–606.
  174. Hamon D, Swid MA, Rajendran PS, et al. Premature ventricular contraction diurnal profiles predict distinct clinical characteristics and beta-blocker responses. J Cardiovasc Electrophysiol. 2019; 30(6): 836–843.
  175. Kjekshus J, Bathen J, Orning OM, et al. A double-blind, crossover comparison of flecainide acetate and disopyramide phosphate in the treatment of ventricular premature complexes. Am J Cardiol. 1984; 53(5): 72B–78B.
  176. Komatsu Y, Nogami A, Kurosaki K, et al. Fascicular ventricular tachycardia originating from papillary muscles: Purkinje network involvement in the reentrant circuit. Circ Arrhythm Electrophysiol. 2017; 10(3): e004549.
  177. Baman TS, Lange DC, Ilg KJ, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm. 2010; 7(7): 865–869.
  178. van Huls van Taxis CFB, Piers SRD, de Riva Silva M, et al. Fatigue as presenting symptom and a high burden of premature ventricular contractions are independently associated with increased ventricular wall stress in patients with normal left ventricular function. Circ Arrhythm Electrophysiol. 2015; 8(6): 1452–1459.
  179. Blaufox AD, Felix GL, Saul JP, et al. Radiofrequency catheter ablation in infants. Circulation. 2001; 104(23): 2803–2808.
  180. Primeau R, Agha A, Giorgi C, et al. Long term efficacy and toxicity of amiodarone in the treatment of refractory cardiac arrhythmias. Can J Cardiol. 1989; 5(2): 98–104.
  181. Kirk CR, Gibbs JL, Thomas R, et al. Cardiovascular collapse after verapamil in supraventricular tachycardia. Arch Dis Child. 1987; 62(12): 1265–1266.
  182. Penela D, Van Huls Van Taxis C, Van Huls Vans Taxis C, et al. Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: a prospective multicenter study. J Am Coll Cardiol. 2013; 62(13): 1195–1202.
  183. Penela D, Acosta J, Aguinaga L, et al. Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Heart Rhythm. 2015; 12(12): 2434–2442.
  184. Yokokawa M, Siontis KC, Kim HM, et al. Value of cardiac magnetic resonance imaging and programmed ventricular stimulation in patients with frequent premature ventricular complexes undergoing radiofrequency ablation. Heart Rhythm. 2017; 14(11): 1695–1701.
  185. Aquaro GD, Pingitore A, Strata E, et al. Cardiac magnetic resonance predicts outcome in patients with premature ventricular complexes of left bundle branch block morphology. J Am Coll Cardiol. 2010; 56(15): 1235–1243.
  186. Lee A, Denman R, Haqqani HM. Ventricular ectopy in the context of left ventricular systolic dysfunction: risk factors and outcomes following catheter ablation. Heart Lung Circ. 2019; 28(3): 379–388.
  187. Mountantonakis SE, Frankel DS, Gerstenfeld EP, et al. Reversal of outflow tract ventricular premature depolarization-induced cardiomyopathy with ablation: effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome. Heart Rhythm. 2011; 8(10): 1608–1614.
  188. Zang M, Zhang T, Mao J, et al. Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function. Heart. 2014; 100(10): 787–793.
  189. Bogun F, Crawford T, Reich S, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm. 2007; 4(7): 863–867.
  190. Singh SN, Fletcher RD, Fisher SG, et al. Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia. N Engl J Med. 1995; 333(2): 77–82.
  191. Hyman MC, Mustin D, Supple G, et al. Class IC antiarrhythmic drugs for suspected premature ventricular contraction-induced cardiomyopathy. Heart Rhythm. 2018; 15(2): 159–163.
  192. Sarrazin JF, Labounty T, Kuhne M, et al. Impact of radiofrequency ablation of frequent post-infarction premature ventricular complexes on left ventricular ejection fraction. Heart Rhythm. 2009; 6(11): 1543–1549.
  193. El Kadri M, Yokokawa M, Labounty T, et al. Effect of ablation of frequent premature ventricular complexes on left ventricular function in patients with nonischemic cardiomyopathy. Heart Rhythm. 2015; 12(4): 706–713.
  194. Lakkireddy D, Di Biase L, Ryschon K, et al. Radiofrequency ablation of premature ventricular ectopy improves the efficacy of cardiac resynchronization therapy in nonresponders. J Am Coll Cardiol. 2012; 60(16): 1531–1539.
  195. Ader F, De Groote P, Réant P, et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin Genet. 2019; 96(4): 317–329.
  196. Kayvanpour E, Sedaghat-Hamedani F, Amr A, et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol. 2017; 106(2): 127–139.
  197. Ortiz-Genga MF, Cuenca S, Dal Ferro M, et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol. 2016; 68(22): 2440–2451.
  198. van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation. 2018; 138(13): 1330–1342.
  199. Gigli M, Merlo M, Graw S, et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2019; 74(11): 1480–1490.
  200. Di Marco A, Brown PF, Bradley J, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail. 2017; 5(1): 28–38.
  201. Klem I, Klein M, Khan M, et al. Relationship of LVEF and myocardial scar to long-term mortality risk and mode of death in patients with nonischemic cardiomyopathy. Circulation. 2021; 143(14): 1343–1358.
  202. Francone M. Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN Radiol. 2014; 2014: 365404.
  203. Skjølsvik ET, Hasselberg NE, Dejgaard LA, et al. Exercise is associated with impaired left ventricular systolic function in patients with lamin A/C genotype. J Am Heart Assoc. 2020; 9(2): e012937.
  204. Zabel M, Willems R, Lubinski A, et al. Clinical effectiveness of primary prevention implantable cardioverter-defibrillators: results of the EU-CERT-ICD controlled multicentre cohort study. Eur Heart J. 2020; 41(36): 3437–3447.
  205. Køber L, Thune JJ, Nielsen JC, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016; 375(13): 1221–1230.
  206. Beggs SAS, Jhund PS, Jackson CE, et al. Non-ischaemic cardiomyopathy, sudden death and implantable defibrillators: a review and meta-analysis. Heart. 2018; 104(2): 144–150.
  207. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004; 350(21): 2151–2158.
  208. Wahbi K, Ben Yaou R, Gandjbakhch E, et al. Development and validation of a new risk prediction score for life-threatening ventricular tachyarrhythmias in laminopathies. Circulation. 2019; 140(4): 293–302.
  209. van Rijsingen IAW, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012; 59(5): 493–500.
  210. Thuillot M, Maupain C, Gandjbakhch E, et al. External validation of risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers. Eur J Heart Fail. 2019; 21(2): 253–254.
  211. Link MS, Costeas XF, Griffith JL, et al. High incidence of appropriate implantable cardioverter-defibrillator therapy in patients with syncope of unknown etiology and inducible ventricular arrhythmias. J Am Coll Cardiol. 1997; 29(2): 370–375.
  212. Goldberger JJ, Subačius H, Patel T, et al. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2014; 63(18): 1879–1889.
  213. Tung R, Vaseghi M, Frankel DS, et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: an International VT Ablation Center Collaborative Group study. Heart Rhythm. 2015; 12(9): 1997–2007.
  214. Dinov B, Fiedler L, Schönbauer R, et al. Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation. 2014; 129(7): 728–736.
  215. Muser D, Santangeli P, Pathak R, et al. Long-term outcomes of catheter ablation of ventricular tachycardia in patients with cardiac sarcoidosis. Circ Arrhythm Electrophysiol. 2016; 9(8): e004333.
  216. Ebert M, Wijnmaalen AP, de Riva M, et al. Prevalence and prognostic impact of pathogenic variants in patients with dilated cardiomyopathy referred for ventricular tachycardia ablation. JACC Clin Electrophysiol. 2020; 6(9): 1103–1114.
  217. Heliö T, Elliott P, Koskenvuo JW, et al. ESC EORP Cardiomyopathy Registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Fail. 2020; 7(5): 3013–3021.
  218. Rastegar N, Te Riele AS, James CA, et al. Fibrofatty changes: incidence at cardiac MR imaging in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Radiology. 2016; 280(2): 405–412.
  219. Aquaro GD, Barison A, Todiere G, et al. Usefulness of combined functional assessment by cardiac magnetic resonance and tissue characterization versus task force criteria for diagnosis of arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2016; 118(11): 1730–1736.
  220. te Riele AS, Bhonsale A, James CA, et al. Incremental value of cardiac magnetic resonance imaging in arrhythmic risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62(19): 1761–1769.
  221. Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015; 36(14): 847–855.
  222. Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013; 6(6): 533–542.
  223. Saberniak J, Hasselberg NE, Borgquist R, et al. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur J Heart Fail. 2014; 16(12): 1337–1344.
  224. Lie ØH, Dejgaard LA, Saberniak J, et al. Harmful effects of exercise intensity and exercise duration in patients with arrhythmogenic cardiomyopathy. JACC Clin Electrophysiol. 2018; 4(6): 744–753.
  225. James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62(14): 1290–1297.
  226. Sawant AC, Te Riele AS, Tichnell C, et al. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers. Heart Rhythm. 2016; 13(1): 199–207.
  227. Corrado D, Calkins H, Link MS, et al. Prophylactic implantable defibrillator in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia and no prior ventricular fibrillation or sustained ventricular tachycardia. Circulation. 2010; 122(12): 1144–1152.
  228. Mazzanti A, Ng K, Faragli A, et al. Arrhythmogenic right ventricular cardiomyopathy: clinical course and predictors of arrhythmic risk. J Am Coll Cardiol. 2016; 68(23): 2540–2550.
  229. Canpolat U, Kabakçi G, Aytemir K, et al. Fragmented QRS complex predicts the arrhythmic events in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Cardiovasc Electrophysiol. 2013; 24(11): 1260–1266.
  230. Martin A, Crawford J, Skinner JR, et al. High arrhythmic burden but low mortality during long-term follow-up in arrhythmogenic right ventricular cardiomyopathy. Heart Lung Circ. 2016; 25(3): 275–281.
  231. Santangeli P, Dello Russo A, Pieroni M, et al. Fragmented and delayed electrograms within fibrofatty scar predict arrhythmic events in arrhythmogenic right ventricular cardiomyopathy: results from a prospective risk stratification study. Heart Rhythm. 2012; 9(8): 1200–1206.
  232. Chivulescu M, Lie ØH, Popescu BA, et al. High penetrance and similar disease progression in probands and in family members with arrhythmogenic cardiomyopathy. Eur Heart J. 2020; 41(14): 1401–1410.
  233. Hulot JS, Jouven X, Empana JP, et al. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004; 110(14): 1879–1884.
  234. Bhonsale A, James CA, Tichnell C, et al. Incidence and predictors of implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy undergoing implantable cardioverter-defibrillator implantation for primary prevention. J Am Coll Cardiol. 2011; 58(14): 1485–1496.
  235. Bosman LP, Sammani A, James CA, et al. Predicting arrhythmic risk in arrhythmogenic right ventricular cardiomyopathy: A systematic review and meta-analysis. Heart Rhythm. 2018; 15(7): 1097–1107.
  236. Saguner AM, Medeiros-Domingo A, Schwyzer MA, et al. Usefulness of inducible ventricular tachycardia to predict long-term adverse outcomes in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2013; 111(2): 250–257.
  237. Corrado D, Leoni L, Link MS, et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2003; 108(25): 3084–3091.
  238. Santangeli P, Tung R, Xue Y, et al. Long-term outcome with catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2015; 8(6): 1413–1421.
  239. Mahida S, Venlet J, Saguner AM, et al. Ablation compared with drug therapy for recurrent ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy: Results from a multicenter study. Heart Rhythm. 2019; 16(4): 536–543.
  240. Berruezo A, Fernández-Armenta J, Mont L, et al. Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique. Circ Arrhythm Electrophysiol. 2012; 5(1): 111–121.
  241. Link MS, Laidlaw D, Polonsky B, et al. Ventricular arrhythmias in the North American multidisciplinary study of ARVC: predictors, characteristics, and treatment. J Am Coll Cardiol. 2014; 64(2): 119–125.
  242. Wang W, Cadrin-Tourigny J, Bhonsale A, et al. Arrhythmic outcome of arrhythmogenic right ventricular cardiomyopathy patients without implantable defibrillators. J Cardiovasc Electrophysiol. 2018; 29(10): 1396–1402.
  243. Ermakov S, Gerstenfeld EP, Svetlichnaya Y, et al. Use of flecainide in combination antiarrhythmic therapy in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2017; 14(4): 564–569.
  244. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014; 130(6): 484–495.
  245. He D, Ye M, Zhang L, et al. Prognostic significance of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy. Heart Lung. 2018; 47(2): 122–126.
  246. Weissler-Snir A, Dorian P, Rakowski H, et al. Primary prevention implantable cardioverter-defibrillators in hypertrophic cardiomyopathy — are there predictors of appropriate therapy? Heart Rhythm. 2021; 18(1): 63–70.
  247. Rosmini S, Biagini E, O'Mahony C, et al. Relationship between aetiology and left ventricular systolic dysfunction in hypertrophic cardiomyopathy. Heart. 2017; 103(4): 300–306.
  248. Ho CY, Day SM, Ashley EA, et al. SHaRe Investigators. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation. 2018; 138(14): 1387–1398.
  249. Kim HY, Park JE, Lee SC, et al. Genotype-Related clinical characteristics and myocardial fibrosis and their association with prognosis in hypertrophic cardiomyopathy. J Clin Med. 2020; 9(6): 1671.
  250. Maron BJ, Maron MS, Semsarian C. Double or compound sarcomere mutations in hypertrophic cardiomyopathy: a potential link to sudden death in the absence of conventional risk factors. Heart Rhythm. 2012; 9(1): 57–63.
  251. Wang J, Wang Y, Zou Y, et al. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail. 2014; 16(9): 950–957.
  252. Pelliccia A, Lemme E, Maestrini V, et al. Does sport participation worsen the clinical course of hypertrophic cardiomyopathy? Clinical outcome of hypertrophic cardiomyopathy in athletes. Circulation. 2018; 137(5): 531–533.
  253. O'Mahony C, Jichi F, Pavlou M, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014; 35(30): 2010–2020.
  254. O'Mahony C, Jichi F, Ommen SR, et al. International external validation study of the 2014 European Society of Cardiology guidelines on sudden cardiac death prevention in hypertrophic cardiomyopathy (EVIDENCE-HCM). Circulation. 2018; 137(10): 1015–1023.
  255. Vriesendorp PA, Schinkel AFL, Liebregts M, et al. Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol. 2015; 8(4): 829–835.
  256. Rowin EJ, Maron BJ, Carrick RT, et al. Outcomes in patients with hypertrophic cardiomyopathy and left ventricular systolic dysfunction. J Am Coll Cardiol. 2020; 75(24): 3033–3043.
  257. Rowin EJ, Maron BJ, Haas TS, et al. Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management. J Am Coll Cardiol. 2017; 69(7): 761–773.
  258. Sadoul N, Prasad K, Elliott PM, et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997; 96(9): 2987–2991.
  259. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000; 36(7): 2212–2218.
  260. Norrish G, Ding T, Field E, et al. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM Risk-Kids). JAMA Cardiol. 2019; 4(9): 918–927.
  261. Norrish G, Qu C, Field E, et al. External validation of the HCM Risk-Kids model for predicting sudden cardiac death in childhood hypertrophic cardiomyopathy. Eur J Prev Cardiol. 2022; 29(4): 678–686.
  262. Elliott PM, Sharma S, Varnava A, et al. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999; 33(6): 1596–1601.
  263. Cecchi F, Maron BJ, Epstein SE. Long-term outcome of patients with hypertrophic cardiomyopathy successfully resuscitated after cardiac arrest. J Am Coll Cardiol. 1989; 13(6): 1283–1288.
  264. Maron BJ, Spirito P, Shen WK, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA. 2007; 298(4): 405–412.
  265. Igarashi M, Nogami A, Kurosaki K, et al. Radiofrequency catheter ablation of Ventricular tachycardia in patients with hypertrophic cardiomyopathy and apical aneurysm. JACC Clin Electrophysiol. 2018; 4(3): 339–350.
  266. Dukkipati SR, d'Avila A, Soejima K, et al. Long-term outcomes of combined epicardial and endocardial ablation of monomorphic ventricular tachycardia related to hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol. 2011; 4(2): 185–194.
  267. Bucci E, Testa M, Licchelli L, et al. A 34-year longitudinal study on long-term cardiac outcomes in DM1 patients with normal ECG at baseline at an Italian clinical centre. J Neurol. 2018; 265(4): 885–895.
  268. Breton R, Mathieu J. Usefulness of clinical and electrocardiographic data for predicting adverse cardiac events in patients with myotonic dystrophy. Can J Cardiol. 2009; 25(2): e23–e27.
  269. Bhakta D, Groh MR, Shen C, et al. Increased mortality with left ventricular systolic dysfunction and heart failure in adults with myotonic dystrophy type 1. Am Heart J. 2010; 160(6): 1137–1141.e1.
  270. Punnoose AR, Kaltman JR, Pastor W, et al. Cardiac disease burden and risk of mortality in hospitalized muscular dystrophy patients. Pediatr Cardiol. 2016; 37(7): 1290–1296.
  271. Merino JL, Carmona JR, Fernández-Lozano I, et al. Mechanisms of sustained ventricular tachycardia in myotonic dystrophy: implications for catheter ablation. Circulation. 1998; 98(6): 541–546.
  272. Wahbi K, Meune C, Porcher R, et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. JAMA. 2012; 307(12): 1292–1301.
  273. Lallemand B, Clementy N, Bernard-Brunet A, et al. The evolution of infrahissian conduction time in myotonic dystrophy patients: clinical implications. Heart. 2012; 98(4): 291–296.
  274. Wahbi K, Babuty D, Probst V, et al. Incidence and predictors of sudden death, major conduction defects and sustained ventricular tachyarrhythmias in 1388 patients with myotonic dystrophy type 1. Eur Heart J. 2017; 38(10): 751–758.
  275. Hermans MCE, Faber CG, Bekkers SC, et al. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2012; 14: 48.
  276. Groh WJ, Groh MR, Saha C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008; 358(25): 2688–2697.
  277. Sanna T, Dello Russo A, Toniolo D, et al. Cardiac features of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutations. Eur Heart J. 2003; 24(24): 2227–2236.
  278. Menon SC, Etheridge SP, Liesemer KN, et al. Predictive value of myocardial delayed enhancement in Duchenne muscular dystrophy. Pediatr Cardiol. 2014; 35(7): 1279–1285.
  279. Florian A, Ludwig A, Engelen M, et al. Left ventricular systolic function and the pattern of late-gadolinium-enhancement independently and additively predict adverse cardiac events in muscular dystrophy patients. J Cardiovasc Magn Reson. 2014; 16: 81.
  280. Prystowsky EN, Pritchett EL, Roses AD, et al. The natural history of conduction system disease in myotonic muscular dystrophy as determined by serial electrophysiologic studies. Circulation. 1979; 60(6): 1360–1364.
  281. Caceres J, Jazayeri M, McKinnie J, et al. Sustained bundle branch reentry as a mechanism of clinical tachycardia. Circulation. 1989; 79(2): 256–270.
  282. Blanck Z, Dhala A, Deshpande S, et al. Bundle branch reentrant ventricular tachycardia: cumulative experience in 48 patients. J Cardiovasc Electrophysiol. 1993; 4(3): 253–262.
  283. Pathak RK, Fahed J, Santangeli P, et al. Long-term outcome of catheter ablation for treatment of bundle branch re-entrant tachycardia. JACC Clin Electrophysiol. 2018; 4(3): 331–338.
  284. Shah Z, Mohammed M, Vuddanda V, et al. National trends, gender, management, and outcomes of patients hospitalized for myocarditis. Am J Cardiol. 2019; 124(1): 131–136.
  285. Maleszewski JJ, Orellana VM, Hodge DO, et al. Long-term risk of recurrence, morbidity and mortality in giant cell myocarditis. Am J Cardiol. 2015; 115(12): 1733–1738.
  286. Rosier L, Zouaghi A, Barré V, et al. High risk of sustained ventricular arrhythmia recurrence after acute myocarditis. J Clin Med. 2020; 9(3): 848.
  287. El-Assaad I, Al-Kindi SG, Oliveira GH, et al. Implantable cardioverter-defibrillator and wait-list outcomes in pediatric patients awaiting heart transplantation. Heart Rhythm. 2015; 12(12): 2443–2448.
  288. Kandolin R, Lehtonen J, Salmenkivi K, et al. Diagnosis, treatment, and outcome of giant-cell myocarditis in the era of combined immunosuppression. Circ Heart Fail. 2013; 6(1): 15–22.
  289. Ekström K, Räisänen-Sokolowski A, Lehtonen J, et al. Long-term outcome and its predictors in giant cell myocarditis. Eur J Heart Fail. 2016; 18(12): 1452–1458.
  290. Vaseghi M, Hu TY, Tung R, et al. Outcomes of catheter ablation of ventricular tachycardia based on etiology in nonischemic heart disease: an international ventricular tachycardia ablation center collaborative study. JACC Clin Electrophysiol. 2018; 4(9): 1141–1150.
  291. Dello Russo A, Casella M, Pieroni M, et al. Drug-refractory ventricular tachycardias after myocarditis: endocardial and epicardial radiofrequency catheter ablation. Circ Arrhythm Electrophysiol. 2012; 5(3): 492–498.
  292. Maccabelli G, Tsiachris D, Silberbauer J, et al. Imaging and epicardial substrate ablation of ventricular tachycardia in patients late after myocarditis. Europace. 2014; 16(9): 1363–1372.
  293. Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015; 131(7): 624–632.
  294. Zipse MM, Tzou WS, Schuller JL, et al. Implantable cardioverter defibrillator therapy in patients with cardiac sarcoidosis. J Cardiovasc Electrophysiol. 2012; 23(9): 925–929.
  295. Betensky BP, Tschabrunn CM, Zado ES, et al. Long-term follow-up of patients with cardiac sarcoidosis and implantable cardioverter-defibrillators. Heart Rhythm. 2012; 9(6): 884–891.
  296. Siontis KC, Santangeli P, Muser D, et al. Efficacy and safety of implantable cardiac defibrillators for treatment of ventricular arrhythmias in patients with cardiac sarcoidosis. Europace. 2013; 15(3): 347–354.
  297. Azoulay LD, Waintraub X, Haroche J, et al. Factors associated with implantable cardioverter defibrillators appropriate therapy in cardiac sarcoidosis: a meta-analysis. Sarcoidosis Vasc Diffuse Lung Dis. 2020; 37(1): 17–23.
  298. Nordenswan HK, Lehtonen J, Ekström K, et al. Outcome of cardiac sarcoidosis presenting with high-grade atrioventricular block. Circ Arrhythm Electrophysiol. 2018; 11(8): e006145.
  299. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013; 6(4): 501–511.
  300. Nadel J, Lancefield T, Voskoboinik A, et al. Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Heart J Cardiovasc Imaging. 2015; 16(6): 634–641.
  301. Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2016; 9(1): e003738.
  302. Coleman GC, Shaw PW, Balfour PC, et al. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis. JACC Cardiovasc Imaging. 2017; 10(4): 411–420.
  303. Smedema JP, van Geuns RJ, Ector J, et al. Right ventricular involvement and the extent of left ventricular enhancement with magnetic resonance predict adverse outcome in pulmonary sarcoidosis. ESC Heart Fail. 2018; 5(1): 157–171.
  304. Velangi PS, Chen KHA, Kazmirczak F, et al. Right ventricular abnormalities on cardiovascular magnetic resonance imaging in patients with sarcoidosis. JACC Cardiovasc Imaging. 2020; 13(6): 1395–1405.
  305. Mehta D, Mori N, Goldbarg SH, et al. Primary prevention of sudden cardiac death in silent cardiac sarcoidosis: role of programmed ventricular stimulation. Circ Arrhythm Electrophysiol. 2011; 4(1): 43–48.
  306. Okada DR, Smith J, Derakhshan A, et al. Electrophysiology study for risk stratification in patients with cardiac sarcoidosis and abnormal cardiac imaging. Int J Cardiol Heart Vasc. 2019; 23: 100342.
  307. Zipse MM, Tzou WS, Schuller JL, et al. Electrophysiologic testing for diagnostic evaluation and risk stratification in patients with suspected cardiac sarcoidosis with preserved left and right ventricular systolic function. J Cardiovasc Electrophysiol. 2019; 30(10): 1939–1948.
  308. Kumar S, Barbhaiya C, Nagashima K, et al. Ventricular tachycardia in cardiac sarcoidosis: characterization of ventricular substrate and outcomes of catheter ablation. Circ Arrhythm Electrophysiol. 2015; 8(1): 87–93.
  309. Jefic D, Joel B, Good E, et al. Role of radiofrequency catheter ablation of ventricular tachycardia in cardiac sarcoidosis: report from a multicenter registry. Heart Rhythm. 2009; 6(2): 189–195.
  310. Papageorgiou N, Providência R, Bronis K, et al. Catheter ablation for ventricular tachycardia in patients with cardiac sarcoidosis: a systematic review. Europace. 2018; 20(4): 682–691.
  311. Stein C, Migliavaca CB, Colpani V, et al. Amiodarone for arrhythmia in patients with Chagas disease: A systematic review and individual patient data meta-analysis. PLoS Negl Trop Dis. 2018; 12(8): e0006742.
  312. Soto-Becerra R, Bazan V, Bautista W, et al. Ventricular tachycardia in the setting of chagasic cardiomyopathy: use of voltage mapping to characterize endoepicardial nonischemic scar distribution. Circ Arrhythm Electrophysiol. 2017; 10(11).
  313. Pisani CF, Romero J, Lara S, et al. Efficacy and safety of combined endocardial/epicardial catheter ablation for ventricular tachycardia in Chagas disease: A randomized controlled study. Heart Rhythm. 2020; 17(9): 1510–1518.
  314. Rassi FM, Minohara L, Rassi A, et al. Systematic review and meta-analysis of clinical outcome after implantable cardioverter-defibrillator therapy in patients with chagas heart disease. JACC Clin Electrophysiol. 2019; 5(10): 1213–1223.
  315. Martinelli M, de Siqueira SF, Sternick EB, et al. Long-term follow-up of implantable cardioverter-defibrillator for secondary prevention in Chagas' heart disease. Am J Cardiol. 2012; 110(7): 1040–1045.
  316. Gali WL, Sarabanda AV, Baggio JM, et al. Implantable cardioverter-defibrillators for treatment of sustained ventricular arrhythmias in patients with Chagas' heart disease: comparison with a control group treated with amiodarone alone. Europace. 2014; 16(5): 674–680.
  317. Carmo AAL, de Sousa MR, Agudelo JF, et al. Implantable cardioverter-defibrillator in Chagas heart disease: A systematic review and meta-analysis of observational studies. Int J Cardiol. 2018; 267: 88–93.
  318. Eckart RE, Hruczkowski TW, Tedrow UB, et al. Sustained ventricular tachycardia associated with corrective valve surgery. Circulation. 2007; 116(18): 2005–2011.
  319. Liang JJ, Castro SA, Muser D, et al. Electrophysiologic substrate, safety, procedural approaches, and outcomes of catheter ablation for ventricular tachycardia in patients after aortic valve replacement. JACC Clin Electrophysiol. 2019; 5(1): 28–38.
  320. Narasimhan C, Jazayeri MR, Sra J, et al. Ventricular tachycardia in valvular heart disease: facilitation of sustained bundle-branch reentry by valve surgery. Circulation. 1997; 96(12): 4307–4313.
  321. Rodríguez-Mañero M, Barrio-López MT, Assi EA, et al. Primary prevention of sudden death in patients with valvular cardiomyopathy. Rev Esp Cardiol (Engl Ed). 2016; 69(3): 272–278.
  322. Gallego P, Gonzalez AE, Sanchez-Recalde A, et al. Incidence and predictors of sudden cardiac arrest in adults with congenital heart defects repaired before adult life. Am J Cardiol. 2012; 110(1): 109–117.
  323. Ghai A, Silversides C, Harris L, et al. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol. 2002; 40(9): 1675–1680.
  324. Khairy P, Landzberg MJ, Gatzoulis MA, et al. Value of programmed ventricular stimulation after tetralogy of fallot repair: a multicenter study. Circulation. 2004; 109(16): 1994–2000.
  325. Atallah J, Gonzalez Corcia MC, Walsh EP, et al. Ventricular arrhythmia and life-threatening events in patients with repaired tetralogy of Fallot. Am J Cardiol. 2020; 132: 126–132.
  326. Bokma JP, de Wilde KC, Vliegen HW, et al. Value of cardiovascular magnetic resonance imaging in noninvasive risk stratification in tetralogy of Fallot. JAMA Cardiol. 2017; 2(6): 678–683.
  327. Kammeraad JAE, van Deurzen CHM, Sreeram N, et al. Predictors of sudden cardiac death after Mustard or Senning repair for transposition of the great arteries. J Am Coll Cardiol. 2004; 44(5): 1095–1102.
  328. Schwerzmann M, Salehian O, Harris L, et al. Ventricular arrhythmias and sudden death in adults after a Mustard operation for transposition of the great arteries. Eur Heart J. 2009; 30(15): 1873–1879.
  329. Koyak Z, de Groot JR, Bouma BJ, et al. Symptomatic but not asymptomatic non-sustained ventricular tachycardia is associated with appropriate implantable cardioverter therapy in tetralogy of Fallot. Int J Cardiol. 2013; 167(4): 1532–1535.
  330. Khairy P, Harris L, Landzberg MJ, et al. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation. 2008; 117(3): 363–370.
  331. Koyak Z, de Groot JR, Van Gelder IC, et al. Implantable cardioverter defibrillator therapy in adults with congenital heart disease: who is at risk of shocks? Circ Arrhythm Electrophysiol. 2012; 5(1): 101–110.
  332. Cochet H, Iriart X, Allain-Nicolaï A, et al. Focal scar and diffuse myocardial fibrosis are independent imaging markers in repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2019; 20(9): 990–1003.
  333. Babu-Narayan SV, Kilner PJ, Li W, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006; 113(3): 405–413.
  334. Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000; 356(9234): 975–981.
  335. Bokma JP, Winter MM, Vehmeijer JT, et al. QRS fragmentation is superior to QRS duration in predicting mortality in adults with tetralogy of Fallot. Heart. 2017; 103(9): 666–671.
  336. Egbe AC, Kothapalli S, Borlaug BA, et al. Mechanism and risk factors for death in adults with tetralogy of Fallot. Am J Cardiol. 2019; 124(5): 803–807.
  337. Sabate Rotes A, Connolly HM, Warnes CA, et al. Ventricular arrhythmia risk stratification in patients with tetralogy of Fallot at the time of pulmonary valve replacement. Circ Arrhythm Electrophysiol. 2015; 8(1): 110–116.
  338. Miyazaki A, Sakaguchi H, Ohuchi H, et al. Efficacy of hemodynamic-based management of tachyarrhythmia after repair of tetralogy of Fallot. Circ J. 2012; 76(12): 2855–2862.
  339. Harrison DA, Harris L, Siu SC, et al. Sustained ventricular tachycardia in adult patients late after repair of tetralogy of Fallot. J Am Coll Cardiol. 1997; 30(5): 1368–1373.
  340. van Zyl M, Kapa S, Padmanabhan D, et al. Mechanism and outcomes of catheter ablation for ventricular tachycardia in adults with repaired congenital heart disease. Heart Rhythm. 2016; 13(7): 1449–1454.
  341. Laredo M, Frank R, Waintraub X, et al. Ten-year outcomes of monomorphic ventricular tachycardia catheter ablation in repaired tetralogy of Fallot. Arch Cardiovasc Dis. 2017; 110(5): 292–302.
  342. Kapel GFL, Reichlin T, Wijnmaalen AP, et al. Re-entry using anatomically determined isthmuses: a curable ventricular tachycardia in repaired congenital heart disease. Circ Arrhythm Electrophysiol. 2015; 8(1): 102–109.
  343. Khairy P, Harris L, Landzberg MJ, et al. Sudden death and defibrillators in transposition of the great arteries with intra-atrial baffles: a multicenter study. Circ Arrhythm Electrophysiol. 2008; 1(4): 250–257.
  344. Kapel GFL, Sacher F, Dekkers OM, et al. Arrhythmogenic anatomical isthmuses identified by electroanatomical mapping are the substrate for ventricular tachycardia in repaired Tetralogy of Fallot. Eur Heart J. 2017; 38(4): 268–276.
  345. Mellor G, Laksman ZWM, Tadros R, et al. Genetic testing in the evaluation of unexplained cardiac arrest: from the CASPER (Cardiac Arrest Survivors with Preserved Ejection Fraction Registry). Circ Cardiovasc Genet. 2017; 10(3): e001686.
  346. Kumar S, Peters S, Thompson T, et al. Familial cardiological and targeted genetic evaluation: low yield in sudden unexplained death and high yield in unexplained cardiac arrest syndromes. Heart Rhythm. 2013; 10(11): 1653–1660.
  347. Leenhardt A, Glaser E, Burguera M, et al. Short-coupled variant of torsade de pointes. A new electrocardiographic entity in the spectrum of idiopathic ventricular tachyarrhythmias. Circulation. 1994; 89(1): 206–215.
  348. Eisenberg SJ, Scheinman MM, Duller NK, et al. Sudden cardiac death and polymorphous ventricular tachycardia in pationts with normal QT intervals and normal systolic cardiac function. Am J Cardiol. 1995; 75(10): 687–692.
  349. Asatryan B, Schaller A, Seiler J, et al. Usefulness of genetic testing in sudden cardiac arrest survivors with or without previous clinical evidence of heart disease. Am J Cardiol. 2019; 123(12): 2031–2038.
  350. Visser M, Dooijes D, van der Smagt JJ, et al. Next-generation sequencing of a large gene panel in patients initially diagnosed with idiopathic ventricular fibrillation. Heart Rhythm. 2017; 14(7): 1035–1040.
  351. Honarbakhsh S, Srinivasan N, Kirkby C, et al. Medium-term outcomes of idiopathic ventricular fibrillation survivors and family screening: a multicentre experience. Europace. 2017; 19(11): 1874–1880.
  352. Meissner MD, Lehmann MH, Steinman RT, et al. Ventricular fibrillation in patients without significant structural heart disease: a multicenter experience with implantable cardioverter-defibrillator therapy. J Am Coll Cardiol. 1993; 21(6): 1406–1412.
  353. Conte G, Caputo ML, Regoli F, et al. True idiopathic ventricular fibrillation in out-of-hospital cardiac arrest survivors in the Swiss Canton Ticino: prevalence, clinical features, and long-term follow-up. Europace. 2017; 19(2): 259–266.
  354. Stampe NK, Jespersen CB, Glinge C, et al. Clinical characteristics and risk factors of arrhythmia during follow-up of patients with idiopathic ventricular fibrillation. J Cardiovasc Electrophysiol. 2020; 31(10): 2677–2686.
  355. Malhi N, Cheung CC, Deif B, et al. Challenge and impact of quinidine access in sudden death syndromes: a national experience. JACC Clin Electrophysiol. 2019; 5(3): 376–382.
  356. Belhassen B, Glick A, Viskin S. Excellent long-term reproducibility of the electrophysiologic efficacy of quinidine in patients with idiopathic ventricular fibrillation and Brugada syndrome. Pacing Clin Electrophysiol. 2009; 32(3): 294–301.
  357. Belhassen B, Shapira I, Shoshani D, et al. Idiopathic ventricular fibrillation: inducibility and beneficial effects of class I antiarrhythmic agents. Circulation. 1987; 75(4): 809–816.
  358. Belhassen B, Viskin S, Fish R, et al. Effects of electrophysiologic-guided therapy with Class IA antiarrhythmic drugs on the long-term outcome of patients with idiopathic ventricular fibrillation with or without the Brugada syndrome. J Cardiovasc Electrophysiol. 1999; 10(10): 1301–1312.
  359. Sadek MM, Benhayon D, Sureddi R, et al. Idiopathic ventricular arrhythmias originating from the moderator band: Electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm. 2015; 12(1): 67–75.
  360. Van Herendael H, Zado ES, Haqqani H, et al. Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm. 2014; 11(4): 566–573.
  361. Santoro F, Di Biase L, Hranitzky P, et al. Ventricular fibrillation triggered by PVCs from papillary muscles: clinical features and ablation. J Cardiovasc Electrophysiol. 2014; 25(11): 1158–1164.
  362. Nakamura T, Schaeffer B, Tanigawa S, et al. Catheter ablation of polymorphic ventricular tachycardia/fibrillation in patients with and without structural heart disease. Heart Rhythm. 2019; 16(7): 1021–1027.
  363. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003; 348(19): 1866–1874.
  364. Churet M, Luttoo K, Hocini M, et al. Diagnostic reproducibility of epinephrine drug challenge interpretation in suspected long QT syndrome. J Cardiovasc Electrophysiol. 2019; 30(6): 896–901.
  365. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004; 109(15): 1826–1833.
  366. Mazzanti A, Maragna R, Vacanti G, et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J Am Coll Cardiol. 2018; 71(15): 1663–1671.
  367. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001; 103(1): 89–95.
  368. Ahn J, Kim HJ, Choi JI, et al. Effectiveness of beta-blockers depending on the genotype of congenital long-QT syndrome: A meta-analysis. PLoS One. 2017; 12(10): e0185680.
  369. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004; 292(11): 1341–1344.
  370. Mazzanti A, Maragna R, Faragli A, et al. Gene-specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol. 2016; 67(9): 1053–1058.
  371. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000; 101(6): 616–623.
  372. Jons C, Moss AJ, Goldenberg I, et al. Risk of fatal arrhythmic events in long QT syndrome patients after syncope. J Am Coll Cardiol. 2010; 55(8): 783–788.
  373. Jang SeY, Cho Y, Kim NK, et al. Video-assisted thoracoscopic left cardiac sympathetic denervation in patients with hereditary ventricular arrhythmias. Pacing Clin Electrophysiol. 2017; 40(3): 232–241.
  374. Waddell-Smith KE, Ertresvaag KN, Li J, et al. Physical and psychological consequences of left cardiac sympathetic denervation in long-QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2015; 8(5): 1151–1158.
  375. Anderson HN, Bos JM, Rohatgi RK, et al. The effect of left cardiac sympathetic denervation on exercise in patients with long QT syndrome. JACC Clin Electrophysiol. 2019; 5(9): 1084–1090.
  376. Bos JM, Bos KM, Johnson JN, et al. Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ Arrhythm Electrophysiol. 2013; 6(4): 705–711.
  377. Bhandari AK, Shapiro WA, Morady F, et al. Electrophysiologic testing in patients with the long QT syndrome. Circulation. 1985; 71(1): 63–71.
  378. Zareba W, Moss AJ, Daubert JP, et al. Implantable cardioverter defibrillator in high‐risk long QT syndrome patients. J Cardiovasc Electrophysiol. 2003; 14(4): 337–341.
  379. Schwartz PJ, Spazzolini C, Priori SG, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 2010; 122(13): 1272–1282.
  380. Delannoy E, Sacher F, Maury P, et al. Cardiac characteristics and long-term outcome in Andersen-Tawil syndrome patients related to KCNJ2 mutation. Europace. 2013; 15(12): 1805–1811.
  381. Inoue YY, Aiba T, Kawata H, et al. Different responses to exercise between Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia. Europace. 2018; 20(10): 1675–1682.
  382. Mazzanti A, Guz D, Trancuccio A, et al. Natural history and risk stratification in Andersen-Tawil syndrome type 1. J Am Coll Cardiol. 2020; 75(15): 1772–1784.
  383. Zhang Li, Benson DW, Tristani-Firouzi M, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005; 111(21): 2720–2726.
  384. Miyamoto K, Aiba T, Kimura H, et al. Efficacy and safety of flecainide for ventricular arrhythmias in patients with Andersen-Tawil syndrome with KCNJ2 mutations. Heart Rhythm. 2015; 12(3): 596–603.
  385. Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002; 110(3): 381–388.
  386. Govindan M, Batchvarov VN, Raju H, et al. Utility of high and standard right precordial leads during ajmaline testing for the diagnosis of Brugada syndrome. Heart. 2010; 96(23): 1904–1908.
  387. Sroubek J, Probst V, Mazzanti A, et al. Programmed ventricular stimulation for risk stratification in the Brugada syndrome: a pooled analysis. Circulation. 2016; 133(7): 622–630.
  388. Hosseini SM, Kim R, Udupa S, et al. Reappraisal of reported genes for sudden arrhythmic death: evidence-based evaluation of gene validity for Brugada syndrome. Circulation. 2018; 138(12): 1195–1205.
  389. Savastano S, Rordorf R, Vicentini A, et al. A comprehensive electrocardiographic, molecular, and echocardiographic study of Brugada syndrome: validation of the 2013 diagnostic criteria. Heart Rhythm. 2014; 11(7): 1176–1183.
  390. Richter S, Sarkozy A, Paparella G, et al. Number of electrocardiogram leads displaying the diagnostic coved-type pattern in Brugada syndrome: a diagnostic consensus criterion to be revised. Eur Heart J. 2010; 31(11): 1357–1364.
  391. Veltmann C, Papavassiliu T, Konrad T, et al. Insights into the location of type I ECG in patients with Brugada syndrome: correlation of ECG and cardiovascular magnetic resonance imaging. Heart Rhythm. 2012; 9(3): 414–421.
  392. Hasdemir C, Payzin S, Kocabas U, et al. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. Heart Rhythm. 2015; 12(7): 1584–1594.
  393. Probst V, Veltmann C, Eckardt L, et al. Long-term prognosis of patients diagnosed with brugada syndrome: results from the FINGER Brugada syndrome registry. Circulation. 2010; 121(5): 635–643.
  394. Amin AS, Meregalli PG, Bardai A, et al. Fever increases the risk for cardiac arrest in the Brugada syndrome. Ann Intern Med. 2008; 149(3): 216–218.
  395. Adler A, Topaz G, Heller K, et al. Fever-induced Brugada pattern: how common is it and what does it mean? Heart Rhythm. 2013; 10(9): 1375–1382.
  396. Rizzo A, Borio G, Sieira J, et al. Ajmaline testing and the Brugada syndrome. Am J Cardiol. 2020; 135: 91–98.
  397. Poli S, Toniolo M, Maiani M, et al. Management of untreatable ventricular arrhythmias during pharmacologic challenges with sodium channel blockers for suspected Brugada syndrome. Europace. 2018; 20(2): 234–242.
  398. Gehi AK, Duong TD, Metz LD, et al. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol. 2006; 17(6): 577–583.
  399. McNamara DA, Goldberger JJ, Berendsen MA, et al. Implantable defibrillators versus medical therapy for cardiac channelopathies. Cochrane Database Syst Rev. 2015(10): CD011168.
  400. Priori SG, Gasparini M, Napolitano C, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012; 59(1): 37–45.
  401. Subramanian M, Prabhu MA, Harikrishnan MS, et al. The utility of exercise testing in risk stratification of asymptomatic patients with type 1 Brugada pattern. J Cardiovasc Electrophysiol. 2017; 28(6): 677–683.
  402. Kubala M, Aïssou L, Traullé S, et al. Use of implantable loop recorders in patients with Brugada syndrome and suspected risk of ventricular arrhythmia. Europace. 2012; 14(6): 898–902.
  403. Scrocco C, Ben-Haim Y, Devine B, et al. Role of subcutaneous implantable loop recorder for the diagnosis of arrhythmias in Brugada syndrome: A United Kingdom single-center experience. Heart Rhythm. 2022; 19(1): 70–78.
  404. Andorin A, Gourraud JB, Mansourati J, et al. The QUIDAM study: Hydroquinidine therapy for the management of Brugada syndrome patients at high arrhythmic risk. Heart Rhythm. 2017; 14(8): 1147–1154.
  405. Belhassen B, Rahkovich M, Michowitz Y, et al. Management of Brugada syndrome: thirty-three-year experience using electrophysiologically guided therapy with class 1A antiarrhythmic drugs. Circ Arrhythm Electrophysiol. 2015; 8(6): 1393–1402.
  406. Ohgo T, Okamura H, Noda T, et al. Acute and chronic management in patients with Brugada syndrome associated with electrical storm of ventricular fibrillation. Heart Rhythm. 2007; 4(6): 695–700.
  407. Nademanee K, Haissaguerre M, Hocini M, et al. Mapping and ablation of ventricular fibrillation associated with early repolarization syndrome. Circulation. 2019; 140(18): 1477–1490.
  408. Nademanee K, Veerakul G, Chandanamattha P, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011; 123(12): 1270–1279.
  409. Zhang P, Tung R, Zhang Z, et al. Characterization of the epicardial substrate for catheter ablation of Brugada syndrome. Heart Rhythm. 2016; 13(11): 2151–2158.
  410. Haïssaguerre M, Extramiana F, Hocini M, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003; 108(8): 925–928.
  411. Brugada J, Pappone C, Berruezo A, et al. Brugada syndrome phenotype elimination by epicardial substrate ablation. Circ Arrhythm Electrophysiol. 2015; 8(6): 1373–1381.
  412. Pappone C, Brugada J, Vicedomini G, et al. Electrical substrate elimination in 135 consecutive patients with Brugada syndrome. Circ Arrhythm Electrophysiol. 2017; 10(5): e005053.
  413. Yamagata K, Horie M, Aiba T, et al. Genotype-phenotype correlation of mutation for the clinical and electrocardiographic characteristics of probands with Brugada syndrome: a Japanese Multicenter Registry. Circulation. 2017; 135(23): 2255–2270.
  414. Haïssaguerre M, Derval N, Sacher F, et al. Sudden cardiac arrest associated with early repolarization. N Engl J Med. 2008; 358(19): 2016–2023.
  415. Rosso R, Kogan E, Belhassen B, et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol. 2008; 52(15): 1231–1238.
  416. Tikkanen JT, Anttonen O, Junttila MJ, et al. Long-term outcome associated with early repolarization on electrocardiography. N Engl J Med. 2009; 361(26): 2529–2537.
  417. Nunn LM, Bhar-Amato J, Lowe MD, et al. Prevalence of J-point elevation in sudden arrhythmic death syndrome families. J Am Coll Cardiol. 2011; 58(3): 286–290.
  418. Watanabe H, Nogami A, Ohkubo K, et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol. 2011; 4(6): 874–881.
  419. Takayama K, Ohno S, Ding WG, et al. A de novo gain-of-function KCND3 mutation in early repolarization syndrome. Heart Rhythm. 2019; 16(11): 1698–1706.
  420. Haïssaguerre M, Sacher F, Nogami A, et al. Characteristics of recurrent ventricular fibrillation associated with inferolateral early repolarization role of drug therapy. J Am Coll Cardiol. 2009; 53(7): 612–619.
  421. Aizawa Y, Chinushi M, Hasegawa K, et al. Electrical storm in idiopathic ventricular fibrillation is associated with early repolarization. J Am Coll Cardiol. 2013; 62(11): 1015–1019.
  422. Patocskai B, Barajas-Martinez H, Hu D, et al. Cellular and ionic mechanisms underlying the effects of cilostazol, milrinone, and isoproterenol to suppress arrhythmogenesis in an experimental model of early repolarization syndrome. Heart Rhythm. 2016; 13(6): 1326–1334.
  423. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med. 2008; 358(19): 2078–2079.
  424. Rodríguez-Capitán J, Fernández-Meseguer A, García-Pinilla JM, et al. Frequency of different electrocardiographic abnormalities in a large cohort of Spanish workers. Europace. 2017; 19(11): 1855–1863.
  425. Sun GZ, Ye N, Chen YT, et al. Early repolarization pattern in the general population: Prevalence and associated factors. Int J Cardiol. 2017; 230: 614–618.
  426. Malhi N, So PP, Cheung CC, et al. Early repolarization pattern inheritance in the cardiac arrest survivors with preserved ejection fraction registry (CASPER). JACC Clin Electrophysiol. 2018; 4(11): 1473–1479.
  427. Sinner MF, Porthan K, Noseworthy PA, et al. A meta-analysis of genome-wide association studies of the electrocardiographic early repolarization pattern. Heart Rhythm. 2012; 9(10): 1627–1634.
  428. Adhikarla C, Boga M, Wood AD, et al. Natural history of the electrocardiographic pattern of early repolarization in ambulatory patients. Am J Cardiol. 2011; 108(12): 1831–1835.
  429. Mahida S, Derval N, Sacher F, et al. Role of electrophysiological studies in predicting risk of ventricular arrhythmia in early repolarization syndrome. J Am Coll Cardiol. 2015; 65(2): 151–159.
  430. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002; 106(1): 69–74.
  431. Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009; 119(18): 2426–2434.
  432. Leren IS, Saberniak J, Majid E, et al. Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β-blockers in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2016; 13(2): 433–440.
  433. van der Werf C, Nederend I, Hofman N, et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol. 2012; 5(4): 748–756.
  434. Wang G, Zhao Na, Zhong S, et al. Safety and efficacy of flecainide for patients with catecholaminergic polymorphic ventricular tachycardia: A systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(34): e16961.
  435. van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011; 57(22): 2244–2254.
  436. De Ferrari GM, Dusi V, Spazzolini C, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation. 2015; 131(25): 2185–2193.
  437. Leenhardt A, Lucet V, Denjoy I, et al. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995; 91(5): 1512–1519.
  438. Kannankeril PJ, Moore JP, Cerrone M, et al. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2017; 2(7): 759–766.
  439. Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011; 57(7): 802–812.
  440. Mazzanti A, Kanthan A, Monteforte N, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014; 63(13): 1300–1308.
  441. Dhutia H, Malhotra A, Parpia S, et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br J Sports Med. 2016; 50(2): 124–129.
  442. Gallagher MM, Magliano G, Yap YG, et al. Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol. 2006; 98(7): 933–935.
  443. Anttonen O, Junttila MJ, Rissanen H, et al. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation. 2007; 116(7): 714–720.
  444. Kobza R, Roos M, Niggli B, et al. Prevalence of long and short QT in a young population of 41,767 predominantly male Swiss conscripts. Heart Rhythm. 2009; 6(5): 652–657.
  445. Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011; 58(6): 587–595.
  446. El-Battrawy I, Besler J, Liebe V, et al. Long-term follow-up of patients with short QT syndrome: clinical profile and outcome. J Am Heart Assoc. 2018; 7(23): e010073.
  447. Mazzanti A, Maragna R, Vacanti G, et al. Hydroquinidine prevents life-threatening arrhythmic events in patients with short qt syndrome. J Am Coll Cardiol. 2017; 70(24): 3010–3015.
  448. El-Battrawy I, Besler J, Li X, et al. Impact of antiarrhythmic drugs on the outcome of short QT syndrome. Front Pharmacol. 2019; 10: 771.
  449. Giustetto C, Scrocco C, Schimpf R, et al. Usefulness of exercise test in the diagnosis of short QT syndrome. Europace. 2015; 17(4): 628–634.
  450. Mason JW, Ramseth DJ, Chanter DO, et al. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J Electrocardiol. 2007; 40(3): 228–234.
  451. Bun SS, Maury P, Giustetto C, et al. Electrical storm in short-QT syndrome successfully treated with Isoproterenol. J Cardiovasc Electrophysiol. 2012; 23(9): 1028–1030.
  452. Seth R, Moss AJ, McNitt S, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007; 49(10): 1092–1098.
  453. Wang YC, Chen CH, Su HY, et al. The impact of maternal cardioversion on fetal haemodynamics. Eur J Obstet Gynecol Reprod Biol. 2006; 126(2): 268–269.
  454. Abello M, Peinado R, Merino JL, et al. Cardioverter defibrillator implantation in a pregnant woman guided with transesophageal echocardiography. Pacing Clin Electrophysiol. 2003; 26(9): 1913–1914.
  455. Rashba EJ, Zareba W, Moss AJ, et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. LQTS Investigators. Circulation. 1998; 97(5): 451–456.
  456. Ishibashi K, Aiba T, Kamiya C, et al. Arrhythmia risk and β-blocker therapy in pregnant women with long QT syndrome. Heart. 2017; 103(17): 1374–1379.
  457. Cheung CC, Lieve KV, Roston TM, et al. Pregnancy in catecholaminergic polymorphic ventricular tachycardia. JACC Clin Electrophysiol. 2019; 5(3): 387–394.
  458. Wu L, Liang E, Fan S, et al. Effect of pregnancy in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2020; 125(4): 613–617.
  459. Bauce B, Daliento L, Frigo G, et al. Pregnancy in women with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Obstet Gynecol Reprod Biol. 2006; 127(2): 186–189.
  460. Gandjbakhch E, Varlet E, Duthoit G, et al. Pregnancy and newborn outcomes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Int J Cardiol. 2018; 258: 172–178.
  461. Driver K, Chisholm CA, Darby AE, et al. Catheter ablation of arrhythmia during pregnancy. J Cardiovasc Electrophysiol. 2015; 26(6): 698–702.
  462. Tuzcu V, Kilinc OU. Implantable cardioverter defibrillator implantation without using fluoroscopy in a pregnant patient. Pacing Clin Electrophysiol. 2012; 35(9): e265–e266.
  463. Fröhlich GM, Holzmeister J, Hübler M, et al. Prophylactic implantable cardioverter defibrillator treatment in patients with end-stage heart failure awaiting heart transplantation. Heart. 2013; 99(16): 1158–1165.
  464. Sandner SE, Wieselthaler G, Zuckermann A, et al. Survival benefit of the implantable cardioverter-defibrillator in patients on the waiting list for cardiac transplantation. Circulation. 2001; 104(12 Suppl 1): I171–I176.
  465. Cantero-Pérez EM, Sobrino-Márquez JM, Grande-Trillo A, et al. Implantable cardioverter defibrillator for primary prevention in patients with severe ventricular dysfunction awaiting heart transplantation. Transplant Proc. 2013; 45(10): 3659–3661.
  466. Pezawas T, Grimm M, Ristl R, et al. Primary preventive cardioverter-defibrillator implantation (Pro-ICD) in patients awaiting heart transplantation. A prospective, randomized, controlled 12-year follow-up study. Transpl Int. 2015; 28(1): 34–41.
  467. Kao AC, Krause SW, Handa R, et al. Wearable defibrillator use in heart failure (WIF): results of a prospective registry. BMC Cardiovasc Disord. 2012; 12: 123.
  468. Alba AC, Foroutan F, Ng Fat Hing NK, et al. Incidence and predictors of sudden cardiac death after heart transplantation: A systematic review and meta-analysis. Clin Transplant. 2018; 32(3): e13206.
  469. Alba AC, Fan CPS, Manlhiot C, et al. The evolving risk of sudden cardiac death after heart transplant. An analysis of the ISHLT Thoracic Transplant Registry. Clin Transplant. 2019; 33(3): e13490.
  470. Klein HU, Meltendorf U, Reek S, et al. Bridging a temporary high risk of sudden arrhythmic death. Experience with the wearable cardioverter defibrillator (WCD). Pacing Clin Electrophysiol. 2010; 33(3): 353–367.
  471. Risgaard B, Winkel BG, Jabbari R, et al. Sports-related sudden cardiac death in a competitive and a noncompetitive athlete population aged 12 to 49 years: data from an unselected nationwide study in Denmark. Heart Rhythm. 2014; 11(10): 1673–1681.
  472. Thiene G, Basso C, Corrado D, et al. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med. 1998; 339(6): 364–369.
  473. Malhotra A, Dhutia H, Finocchiaro G, et al. Outcomes of cardiac screening in adolescent soccer players. N Engl J Med. 2018; 379(6): 524–534.
  474. Baggish AL, Hutter AM, Wang F, et al. Cardiovascular screening in college athletes with and without electrocardiography: A cross-sectional study. Ann Intern Med. 2010; 152(5): 269–275.
  475. Corrado D, Basso C, Pavei A, et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA. 2006; 296(13): 1593–1601.
  476. Steinvil A, Chundadze T, Zeltser D, et al. Mandatory electrocardiographic screening of athletes to reduce their risk for sudden death proven fact or wishful thinking? J Am Coll Cardiol. 2011; 57(11): 1291–1296.
  477. Crescenzi C, Zorzi A, Vessella T, et al. Predictors of left ventricular scar using cardiac magnetic resonance in athletes with apparently idiopathic ventricular arrhythmias. J Am Heart Assoc. 2021; 10(1): e018206.
  478. Rizzo M, Spataro A, Cecchetelli C, et al. Structural cardiac disease diagnosed by echocardiography in asymptomatic young male soccer players: implications for pre-participation screening. Br J Sports Med. 2012; 46(5): 371–373.
  479. Drezner JA, Peterson DF, Siebert DM, et al. Survival after exercise-related sudden cardiac arrest in young athletes: can we do better? Sports Health. 2019; 11(1): 91–98.
  480. Drezner JA, Owens DS, Prutkin JM, et al. Electrocardiographic screening in national collegiate athletic association athletes. Am J Cardiol. 2016; 118(5): 754–759.
  481. Erbel R, Möhlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010; 56(17): 1397–1406.
  482. Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012; 308(8): 788–795.
  483. Elming MB, Nielsen JC, Haarbo J, et al. Age and outcomes of primary prevention implantable cardioverter-defibrillators in patients with nonischemic systolic heart failure. Circulation. 2017; 136(19): 1772–1780.
  484. Expósito V, Rodríguez-Mañero M, González-Enríquez S, et al. Primary prevention implantable cardioverter-defibrillator and cardiac resynchronization therapy-defibrillator in elderly patients: results of a Spanish multicentre study. Europace. 2016; 18(8): 1203–1210.
  485. Poupin P, Bouleti C, Degand B, et al. Prognostic value of Charlson Comorbidity Index in the elderly with a cardioverter defibrillator implantation. Int J Cardiol. 2020; 314: 64–69.



Polish Heart Journal (Kardiologia Polska)