Vol 80, Supp. VI (2022): Zeszyty Edukacyjne 6/2022
Wytyczne ESC
Published online: 2023-10-16

open access

Page views 127
Article views/downloads 336
Get Citation

Connect on Social Media

Connect on Social Media

Wytyczne ESC/ERS 2022 dotyczące rozpoznawania i leczenia nadciśnienia płucnego. Suplement

Marc Humbert, Gabor Kovacs, Marius M. Hoeper, Roberto Badagliacca, Rolf M.F. Berger, Margarita Brida, Jørn Carlsen, Andrew JS Coats, Pilar Escribano-Subias, Pisana Ferrari, Diogenes S. Ferreira, Hossein Ardeschir Ghofrani, George Giannakoulas, David G. Kiely, Eckhard Mayer, Gergely Meszaros, Blin Nagavci, Karen M. Olsson, Joanna Pepke-Zaba, Jennifer K. Quint, Göran Rådegran, Gerald Simonneau, Olivier Sitbon, Thomy Tonia, Mark Toshner, Jean-Luc Vachiery, Anton Vonk Noordegraaf, Marion Delcroix, Stephan Rosenkranz
DOI: 10.33963/v.kp.92523

Abstract

Not available

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: Framing the question and deciding on important outcomes. J Clin Epidemiol. 2011; 64(4): 395–400.
  2. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: Rating the quality of evidence-study limitations (risk of bias). J Clin Epidemiol. 2011; 64(4): 407–415.
  3. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: Rating the quality of evidence-inconsistency. J Clin Epidemiol. 2011; 64(12): 1294–1302.
  4. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: Rating the quality of evidence-indirectness. J Clin Epidemiol. 2011; 64(12): 1303–1310.
  5. Guyatt GH, Oxman A, Kunz R, et al. GRADE guidelines: Rating the quality of evidence-imprecision. J Clin Epidemiol. 2011; 64(12): 1283–1293.
  6. Alonso-Coello P, Oxman AD, Moberg J, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016; 353(2): i2089.
  7. Andrews JC, Schünemann HJ, Oxman AD, et al. GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation's direction and strength. J Clin Epidemiol. 2013; 66(7): 726–735.
  8. Miravitlles M, Tonia T, Rigau D, et al. New era for European Respiratory Society clinical practice guidelines: joining efficiency and high methodological standards. Eur Respir J. 2018; 51(3): 1800221.
  9. Kovacs G, Berghold A, Scheidl S, et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009; 34(4): 888–894.
  10. Andersen MJ, Ersbøll M, Bro-Jeppesen J, et al. Exercise hemodynamics in patients with and without diastolic dysfunction and preserved ejection fraction after myocardial infarction. Circ Heart Fail. 2012; 5(4): 444–451.
  11. Andersen MJ, Wolsk E, Bakkestrøm R, et al. Hemodynamic response to rapid saline infusion compared with exercise in healthy participants aged 20-80 years. J Card Fail. 2019; 25(11): 902–910.
  12. Bentley RF, Barker M, Esfandiari S, et al. Normal and abnormal relationships of pulmonary artery to wedge pressure during exercise. J Am Heart Assoc. 2020; 9(22): e016339.
  13. Buchan TA, Wright SP, Esfandiari S, et al. Pulmonary hemodynamic and right ventricular responses to brief and prolonged exercise in middle-aged endurance athletes. Am J Physiol Heart Circ Physiol. 2019; 316(2): H326–H334.
  14. Claessen G, La Gerche A, Dymarkowski S, et al. Pulmonary vascular and right ventricular reserve in patients with normalized resting hemodynamics after pulmonary endarterectomy. J Am Heart Assoc. 2015; 4(3): e001602.
  15. Claeys M, Claessen G, La Gerche A, et al. Impaired cardiac reserve and abnormal vascular load limit exercise capacity in chronic thromboembolic disease. JACC Cardiovasc Imaging. 2019; 12(8 Pt 1): 1444–1456.
  16. Esfandiari S, Wright SP, Goodman JM, et al. Pulmonary artery wedge pressure relative to exercise work rate in older men and women. Med Sci Sports Exerc. 2017; 49(7): 1297–1304.
  17. Fujimoto N, Borlaug BA, Lewis GD, et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013; 127(1): 55–62.
  18. Gong H, Wong R, Sarma RJ, et al. Cardiovascular effects of ozone exposure in human volunteers. Am J Respir Crit Care Med. 1998; 158(2): 538–546.
  19. Hossack KF, Adair OV, Crowley ST. Atrial natriuretic factor production during upright exercise. Cardiology. 1990; 77(6): 433–442.
  20. Liu J, Fei L, Huang GQ, et al. Right ventricle performances with echocardiography and Tc myocardial perfusion imaging in pulmonary arterial hypertension patients. Exp Biol Med (Maywood). 2018; 243(9): 754–761.
  21. Regensteiner JG, Bauer TA, Reusch JEB, et al. Cardiac dysfunction during exercise in uncomplicated type 2 diabetes. Med Sci Sports Exerc. 2009; 41(5): 977–984.
  22. Remmen JJ, Aengevaeren WRM, Verheugt FWA, et al. Lower body positive pressure by anti-G garment inflation: a suitable method to increase pulmonary capillary wedge pressure in healthy elderly subjects. Clin Physiol Funct Imaging. 2005; 25(1): 27–33.
  23. Remmen JJ, Aengevaeren WRM, Verheugt FWA, et al. Detection of elevated pulmonary capillary wedge pressure in elderly patients with various cardiac disorders by the Valsalva manoeuvre. Clin Sci (Lond). 2006; 111(2): 153–162.
  24. Sullivan MJ, Cobb FR, Higginbotham MB. Stroke volume increases by similar mechanisms during upright exercise in normal men and women. Am J Cardiol. 1991; 67(16): 1405–1412.
  25. Wolsk E, Bakkestrøm R, Thomsen JH, et al. The influence of age on hemodynamic parameters during rest and exercise in healthy individuals. JACC Heart Fail. 2017; 5(5): 337–346.
  26. Wright SP, Granton JT, Esfandiari S, et al. The relationship of pulmonary vascular resistance and compliance to pulmonary artery wedge pressure during submaximal exercise in healthy older adults. J Physiol. 2016; 594(12): 3307–3315.
  27. Maron BA, Hess E, Maddox TM, et al. Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation. 2016; 133(13): 1240–1248.
  28. Maron BA, Brittain EL, Hess E, et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med. 2020; 8(9): 873–884.
  29. Assad TR, Maron BA, Robbins IM, et al. Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension. JAMA Cardiol. 2017; 2(12): 1361–1368.
  30. Douschan P, Kovacs G, Avian A, et al. Mild elevation of pulmonary arterial pressure as a predictor of mortality. Am J Respir Crit Care Med. 2018; 197(4): 509–516.
  31. Heresi GA, Minai OA, Tonelli AR, et al. Clinical characterization and survival of patients with borderline elevation in pulmonary artery pressure. Pulm Circ. 2013; 3(4): 916–925.
  32. Cooper R, Ghali J, Simmons BE, et al. Elevated pulmonary artery pressure. An independent predictor of mortality. Chest. 1991; 99(1): 112–120.
  33. Kimura M, Taniguchi H, Kondoh Y, et al. Pulmonary hypertension as a prognostic indicator at the initial evaluation in idiopathic pulmonary fibrosis. Respiration. 2013; 85(6): 456–463.
  34. Suzuki A, Taniguchi H, Watanabe N, et al. Significance of pulmonary arterial pressure as a prognostic indicator in lung-dominant connective tissue disease. PLoS One. 2014; 9(9): e108339.
  35. Takahashi K, Taniguchi H, Ando M, et al. Mean pulmonary arterial pressure as a prognostic indicator in connective tissue disease associated with interstitial lung disease: a retrospective cohort study. BMC Pulm Med. 2016; 16(1): 55.
  36. Coghlan JG, Wolf M, Distler O, et al. Incidence of pulmonary hypertension and determining factors in patients with systemic sclerosis. Eur Respir J. 2018; 51(4): 1701197.
  37. Valerio CJ, Schreiber BE, Handler CE, et al. Borderline mean pulmonary artery pressure in patients with systemic sclerosis: transpulmonary gradient predicts risk of developing pulmonary hypertension. Arthritis Rheum. 2013; 65(4): 1074–1084.
  38. Xanthouli P, Jordan S, Milde N, et al. Haemodynamic phenotypes and survival in patients with systemic sclerosis: the impact of the new definition of pulmonary arterial hypertension. Ann Rheum Dis. 2020; 79(3): 370–378.
  39. Brunner NW, Yue SF, Stub D, et al. The prognostic importance of the diastolic pulmonary gradient, transpulmonary gradient, and pulmonary vascular resistance in patients undergoing transcatheter aortic valve replacement. Catheter Cardiovasc Interv. 2017; 90(7): 1185–1191.
  40. Raitière O, Berthelot E, Fauvel C, et al. The dangerous and contradictory prognostic significance of PVR<3WU when TAPSE<16mm in postcapillary pulmonary hypertension. ESC Heart Fail. 2020; 7(5): 2398–2405.
  41. Vanderpool RR, Saul M, Nouraie M, et al. Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol. 2018; 3(4): 298–306.
  42. Ratwatte S, Anderson J, Strange G, et al. Pulmonary arterial hypertension with below threshold pulmonary vascular resistance. Eur Respir J. 2020; 56(1): 1901654.
  43. Ottosson-Seeberger A, Lundberg JM, Alvestrand A, et al. Central and regional hemodynamic effects during infusion of Big endothelin-1 in healthy humans. J Appl Physiol (1985). 1996; 80(6): 1921–1927.
  44. Albert J, Schedin U, Lindqvist M, et al. Blockade of endogenous nitric oxide production results in moderate hypertension, reducing sympathetic activity and shortening bleeding time in healthy volunteers. Acta Anaesthesiol Scand. 1997; 41(9): 1104–1113.
  45. Berglund H, Edlund A, Theodorsson E, et al. Haemodynamic and hormonal responses to cardiac pacing in humans: influence of different stimulation sequences and rates. Clin Sci (Lond). 1995; 88(2): 165–172.
  46. Blitzer ML, Loh E, Roddy MA, et al. Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J Am Coll Cardiol. 1996; 28(3): 591–596.
  47. Chen YT, Kan MN, Lee AY, et al. Pulmonary venous flow: its relationship to left atrial and mitral valve motion. J Am Soc Echocardiogr. 1993; 6(4): 387–394.
  48. Dernellis J, Panaretou M. Assessment of left atrial input impedance in normal subjects and in hypertensive patients. Eur J Heart Fail. 2005; 7(1): 63–68.
  49. Domingo E, Grignola JC, Aguilar R, et al. Impairment of pulmonary vascular reserve and right ventricular systolic reserve in pulmonary arterial hypertension. BMC Pulm Med. 2014; 14: 69.
  50. Edlund A, Sollevi A, Linde B. Haemodynamic and metabolic effects of infused adenosine in man. Clin Sci (Lond). 1990; 79(2): 131–138.
  51. Gannedahl P, Odeberg S, Brodin LA, et al. Effects of posture and pneumoperitoneum during anaesthesia on the indices of left ventricular filling. Acta Anaesthesiol Scand. 1996; 40(2): 160–166.
  52. Gluskowski J, Gorecka D, Hawrylkiewicz I, et al. Acute effects of almitrine infusion on pulmonary haemodynamics in normal man. Bull Eur Physiopathol Respir. 1984; 20(4): 313–317.
  53. Hadinnapola C, Li Q, Su Li, et al. The resistance-compliance product of the pulmonary circulation varies in health and pulmonary vascular disease. Physiol Rep. 2015; 3(4).
  54. Hilty MP, Müller A, Flück D, et al. Effect of increased blood flow on pulmonary circulation before and during high altitude acclimatization. High Alt Med Biol. 2016; 17(4): 305–314.
  55. Johansson M, Rundqvist B, Petersson M, et al. Regional norepinephrine spillover in response to angiotensin-converting enzyme inhibition in healthy subjects. J Hypertens. 2003; 21(7): 1371–1375.
  56. Krovetz LJ, Goldbloom S. Normal standards for cardiovascular data. II. Pressure and vascular resistances. Johns Hopkins Med J. 1972; 130(3): 187–195.
  57. Kubo SH, Rector TS, Heifetz SM, et al. Atrial natriuretic factor attenuates sympathetic reflexes during lower body negative pressure in normal men. J Cardiovasc Pharmacol. 1990; 16(6): 881–889.
  58. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004; 32(3): 691–699.
  59. Lockhart A, Duhaze P, Polianski J, et al. A modified double dye injection method for pulmonary blood volume determination. II. Results in resting and exercising normal subjects. Cardiovasc Res. 1974; 8(1): 120–131.
  60. Marshall WK, Bedford RF, Miller ED. Cardiovascular responses in the seated position-impact of four anesthetic techniques. Anesth Analg. 1983; 62(7): 648–653.
  61. McCabe C, White PA, Hoole SP, et al. Right ventricular dysfunction in chronic thromboembolic obstruction of the pulmonary artery: a pressure-volume study using the conductance catheter. J Appl Physiol (1985). 2014; 116(4): 355–363.
  62. Moe GW, Canepa-Anson R, Howard RJ, et al. Response of atrial natriuretic factor to postural change in patients with heart failure versus subjects with normal hemodynamics. J Am Coll Cardiol. 1990; 16(3): 599–606.
  63. Pandey A, Kraus WE, Brubaker PH, et al. Healthy aging and cardiovascular function: invasive hemodynamics during rest and exercise in 104 healthy volunteers. JACC Heart Fail. 2020; 8(2): 111–121.
  64. Parker MM, Ognibene FP, Parrillo JE. Peak systolic pressure/end-systolic volume ratio, a load-independent measure of ventricular function, is reversibly decreased in human septic shock. Crit Care Med. 1994; 22(12): 1955–1959.
  65. Riddez L, Hahn RG, Brismar B, et al. Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Crit Care Med. 1997; 25(4): 635–640.
  66. Rubal BJ, Geer MR, Bickell WH. Effects of pneumatic antishock garment inflation in normovolemic subjects. J Appl Physiol (1985). 1989; 67(1): 339–345.
  67. Stamler JS, Loh E, Roddy MA, et al. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994; 89(5): 2035–2040.
  68. Stickland MK, Welsh RC, Haykowsky MJ, et al. Effect of acute increases in pulmonary vascular pressures on exercise pulmonary gas exchange. J Appl Physiol (1985). 2006; 100(6): 1910–1917.
  69. Uhl GS, Boucher CA, Oliveros RA, et al. Exercise-induced myocardial oxygen supply-demand imbalance in asymptomatic or mildly symptomatic aortic regurgitation. Chest. 1981; 80(6): 686–691.
  70. van Empel VPM, Mariani J, Borlaug BA, et al. Impaired myocardial oxygen availability contributes to abnormal exercise hemodynamics in heart failure with preserved ejection fraction. J Am Heart Assoc. 2014; 3(6): e001293.
  71. Watts JA, Kelly FR, Bauch TD, et al. Rest and exercise hemodynamic and metabolic findings in active duty soldiers referred for cardiac catheterization to exclude heart disease: Insights from past invasive cardiopulmonary exercise testing using multisensor high fidelity catheters. Catheter Cardiovasc Interv. 2018; 91(1): 35–46.
  72. Weaver LK, Howe S, Snow GL, et al. Arterial and pulmonary arterial hemodynamics and oxygen delivery/extraction in normal humans exposed to hyperbaric air and oxygen. J Appl Physiol (1985). 2009; 107(1): 336–345.
  73. Yagi H, Yamada H, Kobayashi T, et al. Doppler assessment of pulmonary hypertension induced by hypoxic breathing in subjects susceptible to high altitude pulmonary edema. Am Rev Respir Dis. 1990; 142(4): 796–801.
  74. Carrick-Ranson G, Hastings JL, Bhella PS, et al. Effect of healthy aging on left ventricular relaxation and diastolic suction. Am J Physiol Heart Circ Physiol. 2012; 303(3): H315–H322.
  75. Firstenberg MS, Levine BD, Garcia MJ, et al. Relationship of echocardiographic indices to pulmonary capillary wedge pressures in healthy volunteers. J Am Coll Cardiol. 2000; 36(5): 1664–1669.
  76. Fujimoto N, Prasad A, Hastings JL, et al. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation. 2010; 122(18): 1797–1805.
  77. Fujimoto N, Hastings JL, Bhella PS, et al. Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans. J Physiol. 2012; 590(8): 1871–1880.
  78. Fujimoto N, Hastings JL, Carrick-Ranson G, et al. Cardiovascular effects of 1 year of alagebrium and endurance exercise training in healthy older individuals. Circ Heart Fail. 2013; 6(6): 1155–1164.
  79. Higginbotham MB, Morris KG, Williams RS, et al. Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res. 1986; 58(2): 281–291.
  80. Howden EJ, Sarma S, Lawley JS, et al. Reversing the cardiac effects of sedentary aging in middle age-a randomized controlled trial: implications for heart failure prevention. Circulation. 2018; 137(15): 1549–1560.
  81. Katkov VE, Chestukhin VV, Nikolayenko EM, et al. Central circulation of a normal man during 7-day head-down tilt and decompression of various body parts. Aviat Space Environ Med. 1983; 54(12 Pt 2): S24–S30.
  82. Koskinen P, Kupari M, Nieminen MS, et al. Effects of alcohol on systemic and pulmonary hemodynamics in normal humans. Clin Cardiol. 1986; 9(10): 479–482.
  83. Löllgen H, Klein KE, Gebhardt U, et al. Central hemodynamics during zero gravity simulated by head-down bedrest. Aviat Space Environ Med. 1984; 55(10): 887–892.
  84. Maeder MT, Thompson BR, Brunner-La Rocca HP, et al. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 2010; 56(11): 855–863.
  85. Okada RD, Osbakken MD, Boucher CA, et al. Pulmonary blood volume ratio response to exercise; a noninvasive determination of exercise-induced changes in pulmonary capillary wedge pressure. Circulation. 1982; 65(1): 126–133.
  86. Oki T, Kageji Y, Fukuda N, et al. Assessment of left atrial pressure and volume changes during atrial systole with transesophageal pulsed Doppler echocardiography of transmitral and pulmonary venous flow velocities. Jpn Heart J. 1996; 37(3): 333–342.
  87. Oliveira RKF, Agarwal M, Tracy JA, et al. Age-related upper limits of normal for maximum upright exercise pulmonary haemodynamics. Eur Respir J. 2016; 47(4): 1179–1188.
  88. Prasad A, Okazaki K, Arbab-Zadeh A, et al. Abnormalities of Doppler measures of diastolic function in the healthy elderly are not related to alterations of left atrial pressure. Circulation. 2005; 111(12): 1499–1503.
  89. Shibata S, Hastings JL, Prasad A, et al. Congestive heart failure with preserved ejection fraction is associated with severely impaired dynamic Starling mechanism. J Appl Physiol (1985). 2011; 110(4): 964–971.
  90. van Empel VPM, Kaye DM, Borlaug BA. Effects of healthy aging on the cardiopulmonary hemodynamic response to exercise. Am J Cardiol. 2014; 114(1): 131–135.
  91. Zhao L, Mason NA, Morrell NW, et al. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation. 2001; 104(4): 424–428.
  92. Ottervanger JP, Kruijssen HA, Hoes AW, et al. Long-term prognostic importance of a single pulmonary wedge pressure measurement after myocardial infarction: a ten-year follow-up study. Int J Cardiol. 1994; 43(3): 239–246.
  93. Aalders M, Kok W. Comparison of hemodynamic factors predicting prognosis in heart failure: a systematic review. J Clin Med. 2019; 8(10): 1757.
  94. Rubin LJ, Mendoza J, Hood M, et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann Intern Med. 1990; 112(7): 485–491.
  95. Barst RJ, Rubin LJ, Long WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996; 334(5): 296–301.
  96. Rubin LJ, Badesch DB, Barst RJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002; 346(12): 896–903.
  97. Olschewski H, Simonneau G, Galiè N, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002; 347(5): 322–329.
  98. Simonneau G, Barst RJ, Galie N, et al. Treprostinil Study Group. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2002; 165(6): 800–804.
  99. Galiè N, Torbicki A, Barst R, et al. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J. 2004; 25(24): 2243–2278.
  100. Galiè N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005; 353(20): 2148–2157.
  101. Galiè N, Olschewski H, Oudiz RJ, et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008; 117(23): 3010–3019.
  102. Oudiz RJ, Brundage BH, Galiè N, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009; 119(22): 2894–2903.
  103. Galiè N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009; 30(20): 2493–2537.
  104. Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009; 34(6): 1219–1263.
  105. Pulido T, Adzerikho I, Channick RN, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013; 369(9): 809–818.
  106. Ghofrani HA, Galiè N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013; 369(4): 330–340.
  107. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015; 46(4): 903–975.
  108. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016; 37(1): 67–119.
  109. Sitbon O, Channick R, Chin KM, et al. GRIPHON Investigators. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med. 2015; 373(26): 2522–2533.
  110. Moreira EM, Gall H, Leening MJG, et al. Prevalence of pulmonary hypertension in the general population: the Rotterdam study. PLoS One. 2015; 10(6): e0130072.
  111. D'Alto M, Romeo E, Argiento P, et al. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol. 2013; 168(4): 4058–4062.
  112. Gall H, Yogeswaran A, Fuge J, et al. Validity of echocardiographic tricuspid regurgitation gradient to screen for new definition of pulmonary hypertension. EClinicalMedicine. 2021; 34: 100822.
  113. D'Alto M, Di Maio M, Romeo E, et al. Echocardiographic probability of pulmonary hypertension: a validation study. Eur Respir J. 2022; 60(2).
  114. Weyman AE. Principles and practice of echocardiography. 2nd ed. Lippincott Williams & Wilkins, Philadelphia 1994.
  115. Badagliacca R, Poscia R, Pezzuto B, et al. Pulmonary arterial dilatation in pulmonary hypertension: prevalence and prognostic relevance. Cardiology. 2012; 121(2): 76–82.
  116. Terzikhan N, Bos D, Lahousse L, et al. Pulmonary artery to aorta ratio and risk of all-cause mortality in the general population: the Rotterdam Study. Eur Respir J. 2017; 49(6): 1602168.
  117. Huston JH, Maron BA, French J, et al. Association of mild echocardiographic pulmonary hypertension with mortality and right ventricular function. JAMA Cardiol. 2019; 4(11): 1112–1121.
  118. Tello K, Axmann J, Ghofrani HA, et al. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int J Cardiol. 2018; 266: 229–235.
  119. Tello K, Wan J, Dalmer A, et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging. 2019; 12(9): e009047.
  120. Santaniello A, Casella R, Vicenzi M, et al. Cardiopulmonary exercise testing in a combined screening approach to individuate pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford). 2020; 59(7): 1581–1586.
  121. Dumitrescu D, Nagel C, Kovacs G, et al. Cardiopulmonary exercise testing for detecting pulmonary arterial hypertension in systemic sclerosis. Heart. 2017; 103(10): 774–782.
  122. Amsallem M, Sweatt AJ, Aymami MC, et al. Right heart end-systolic remodeling index strongly predicts outcomes in pulmonary arterial hypertension: comparison with validated models. Circ Cardiovasc Imaging. 2017; 10(6): e005771.
  123. Badagliacca R, Poscia R, Pezzuto B, et al. Prognostic relevance of right heart reverse remodeling in idiopathic pulmonary arterial hypertension. J Heart Lung Transplant. 2018 [Epub ahead of print].
  124. Chen L, Larsen CM, Le RJ, et al. The prognostic significance of tricuspid valve regurgitation in pulmonary arterial hypertension. Clin Respir J. 2018; 12(4): 1572–1580.
  125. Ghio S, Mercurio V, Fortuni F, et al. A comprehensive echocardiographic method for risk stratification in pulmonary arterial hypertension. Eur Respir J. 2020; 56(3).
  126. Badagliacca R, Papa S, Valli G, et al. Echocardiography combined with cardiopulmonary exercise testing for the prediction of outcome in idiopathic pulmonary arterial hypertension. Chest. 2016; 150(6): 1313–1322.
  127. Ernande L, Cottin V, Leroux PY, et al. Right isovolumic contraction velocity predicts survival in pulmonary hypertension. J Am Soc Echocardiogr. 2013; 26(3): 297–306.
  128. Fenstad ER, Le RJ, Sinak LJ, et al. Pericardial effusions in pulmonary arterial hypertension: characteristics, prognosis, and role of drainage. Chest. 2013; 144(5): 1530–1538.
  129. Batal O, Dardari Z, Costabile C, et al. Prognostic value of pericardial effusion on serial echocardiograms in pulmonary arterial hypertension. Echocardiography. 2015; 32(10): 1471–1476.
  130. Badagliacca R, Pezzuto B, Papa S, et al. Right ventricular strain curve morphology and outcome in idiopathic pulmonary arterial hypertension. JACC Cardiovasc Imaging. 2021; 14(1): 162–172.
  131. Badagliacca R, Reali M, Poscia R, et al. Right intraventricular dyssynchrony in idiopathic, heritable, and anorexigen-induced pulmonary arterial hypertension: clinical impact and reversibility. JACC Cardiovasc Imaging. 2015; 8(6): 642–652.
  132. van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007; 28(10): 1250–1257.
  133. Swift AJ, Capener D, Johns C, et al. Magnetic resonance imaging in the prognostic evaluation of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2017; 196(2): 228–239.
  134. Lewis RA, Johns CS, Cogliano M, et al. Identification of cardiac magnetic resonance imaging thresholds for risk stratification in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2020; 201(4): 458–468.
  135. Badagliacca R, Poscia R, Pezzuto B, et al. Right ventricular concentric hypertrophy and clinical worsening in idiopathic pulmonary arterial hypertension. J Heart Lung Transplant. 2016; 35(11): 1321–1329.
  136. Brewis MJ, Bellofiore A, Vanderpool RR, et al. Imaging right ventricular function to predict outcome in pulmonary arterial hypertension. Int J Cardiol. 2016; 218: 206–211.
  137. van der Bruggen CE, Handoko ML, Bogaard HJ, et al. The value of hemodynamic measurements or cardiac MRI in the follow-up of patients with idiopathic pulmonary arterial hypertension. Chest. 2021; 159(4): 1575–1585.
  138. Courand PY, Pina Jomir G, Khouatra C, et al. Prognostic value of right ventricular ejection fraction in pulmonary arterial hypertension. Eur Respir J. 2015; 45(1): 139–149.
  139. Benza RL, Kanwar MK, Raina A, et al. Development and validation of an abridged version of the REVEAL 2.0 risk score calculator, REVEAL lite 2, for use in patients with pulmonary arterial hypertension. Chest. 2021; 159(1): 337–346.
  140. Hjalmarsson C, Kjellström B, Jansson K, et al. Early risk prediction in idiopathic connective tissue disease-associated pulmonary arterial hypertension: call for a refined assessment. ERJ Open Res. 2021; 7(3).
  141. Hjalmarsson C, Rådegran G, Kylhammar D, et al. SveFPH and SPAHR. Impact of age and comorbidity on risk stratification in idiopathic pulmonary arterial hypertension. Eur Respir J. 2018; 51(5): 1702310.
  142. Humbert M, Farber HW, Ghofrani HA, et al. Risk assessment in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019; 53(6): 1802004.
  143. Kylhammar D, Kjellström B, Hjalmarsson C, et al. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. 2018; 39(47): 4175–4181.
  144. Benza RL, Lohmueller LC, Kraisangka J, et al. Risk assessment in pulmonary arterial hypertension patients: the long and short of it. Adv Pulm Hypertens. 2018; 16(3): 125–135.
  145. Boucly A, Weatherald J, Savale L, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017; 50(2): 1700889.
  146. Hoeper MM, Kramer T, Pan Z, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J. 2017; 50(2): 1700740.
  147. Badagliacca R, D’Alto M, Ghio S, et al. Risk reduction and hemodynamics with initial combination therapy in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2021; 203(4): 484–492.
  148. Bouzina H, Rådegran G, Butler O, et al. Longitudinal changes in risk status in pulmonary arterial hypertension. ESC Heart Fail. 2021; 8(1): 680–690.
  149. Kanwar M, Khan MS, Raina A, et al. Role of echocardiogram in predicting prognosis in pulmonary arterial hypertension: a meta-analysis. J Heart Lung Transplant. 2020; 39(4): S509.
  150. Sitbon O, Benza RL, Badesch DB, et al. Validation of two predictive models for survival in pulmonary arterial hypertension. Eur Respir J. 2015; 46(1): 152–164.
  151. Yogeswaran A, Richter MJ, Sommer N, et al. Advanced risk stratification of intermediate risk group in pulmonary arterial hypertension. Pulm Circ. 2020; 10(4): 2045894020961739.
  152. Zelniker TA, Huscher D, Vonk-Noordegraaf A, et al. The 6MWT as a prognostic tool in pulmonary arterial hypertension: results from the COMPERA registry. Clin Res Cardiol. 2018; 107(6): 460–470.
  153. Galiè N, Badesch DB, Oudiz RJ, et al. Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2005; 46(3): 529–535.
  154. Oudiz RJ, Galiè N, Olschewski H, et al. Long-term ambrisentan therapy for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009; 54(21): 1971–1981.
  155. Channick RN, Simonneau G, Sitbon O, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001; 358(9288): 1119–1123.
  156. Galiè N, Rubin Lj, Hoeper Mm, et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet. 2008; 371(9630): 2093–2100.
  157. Galiè N, Jansa P, Pulido T, et al. SERAPHIN haemodynamic substudy: the effect of the dual endothelin receptor antagonist macitentan on haemodynamic parameters and NT-proBNP levels and their association with disease progression in patients with pulmonary arterial hypertension. Eur Heart J. 2017; 38(15): 1147–1155.
  158. Sitbon O, Bosch J, Cottreel E, et al. Macitentan for the treatment of portopulmonary hypertension (PORTICO): a multicentre, randomised, double-blind, placebo-controlled, phase 4 trial. Lancet Respir Med. 2019; 7(7): 594–604.
  159. Rubin LJ, Badesch DB, Fleming TR, et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest. 2011; 140(5): 1274–1283.
  160. Barst RJ, Beghetti M, Pulido T, et al. STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. Circulation. 2014; 129(19): 1914–1923.
  161. Oudiz RJ, Brundage BH, Galiè N, et al. Tadalafil for the treatment of pulmonary arterial hypertension: a double-blind 52-week uncontrolled extension study. J Am Coll Cardiol. 2012; 60(8): 768–774.
  162. Rubin LJ, Galiè N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension: a long-term extension study (PATENT-2). Eur Respir J. 2015; 45(5): 1303–1313.
  163. Badesch DB, Tapson VF, McGoon MD, et al. Continuous intravenous epoprostenol for pulmonary hypertension due to the scleroderma spectrum of disease. A randomized, controlled trial. Ann Intern Med. 2000; 132(6): 425–434.
  164. McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation. 2002; 106(12): 1477–1482.
  165. Sitbon O, Humbert M, Nunes H, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension. J Am Coll Cardiol. 2002; 40(4): 780–788.
  166. Badesch DB, McGoon MD, Barst RJ, et al. Longterm survival among patients with scleroderma-associated pulmonary arterial hypertension treated with intravenous epoprostenol. J Rheumatol. 2009; 36(10): 2244–2249.
  167. Hoeper MM, Schwarze M, Ehlerding S, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med. 2000; 342(25): 1866–1870.
  168. Higenbottam T, Butt AY, McMahon A, et al. Long-term intravenous prostaglandin (epoprostenol or iloprost) for treatment of severe pulmonary hypertension. Heart. 1998; 80(2): 151–155.
  169. Hoeper MM, Spiekerkoetter E, Westerkamp V, et al. Intravenous iloprost for treatment failure of aerosolised iloprost in pulmonary arterial hypertension. Eur Respir J. 2002; 20(2): 339–343.
  170. Hoeper MM, Gall H, Seyfarth HJ, et al. Long-term outcome with intravenous iloprost in pulmonary arterial hypertension. Eur Respir J. 2009; 34(1): 132–137.
  171. Barst RJ, Galie N, Naeije R, et al. Long-term outcome in pulmonary arterial hypertension patients treated with subcutaneous treprostinil. Eur Respir J. 2006; 28(6): 1195–1203.
  172. Lang I, Gomez-Sanchez M, Kneussl M, et al. Efficacy of long-term subcutaneous treprostinil sodium therapy in pulmonary hypertension. Chest. 2006; 129(6): 1636–1643.
  173. Sadushi-Koliçi R, Skoro-Sajer N, Zimmer D, et al. Long-term treatment, tolerability, and survival with sub-cutaneous treprostinil for severe pulmonary hypertension. J Heart Lung Transplant. 2012; 31(7): 735–743.
  174. Voswinckel R, Enke B, Reichenberger F, et al. Favorable effects of inhaled treprostinil in severe pulmonary hypertension: results from randomized controlled pilot studies. J Am Coll Cardiol. 2006; 48(8): 1672–1681.
  175. Hiremath J, Thanikachalam S, Parikh K, et al. Exercise improvement and plasma biomarker changes with intravenous treprostinil therapy for pulmonary arterial hypertension: a placebo-controlled trial. J Heart Lung Transplant. 2010; 29(2): 137–149.
  176. Gomberg-Maitland M, Tapson VF, Benza RL, et al. Transition from intravenous epoprostenol to intravenous treprostinil in pulmonary hypertension. Am J Respir Crit Care Med. 2005; 172(12): 1586–1589.
  177. Sitbon O, Manes A, Jais X, et al. Rapid switch from intravenous epoprostenol to intravenous treprostinil in patients with pulmonary arterial hypertension. J Cardiovasc Pharmacol. 2007; 49(1): 1–5.
  178. Jing ZC, Parikh K, Pulido T, et al. Efficacy and safety of oral treprostinil monotherapy for the treatment of pulmonary arterial hypertension: a randomized, controlled trial. Circulation. 2013; 127(5): 624–633.
  179. Galiè N, Humbert M, Vachiéry JL, et al. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2002; 39(9): 1496–1502.
  180. Barst RJ, McGoon M, McLaughlin V, et al. Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2003; 41(12): 2119–2125.
  181. Venitz J, Zack J, Gillies H, et al. Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension. J Clin Pharmacol. 2012; 52(12): 1784–1805.
  182. Grünig E, Ohnesorge J, Benjamin N, et al. Plasma drug concentrations in patients with pulmonary arterial hypertension on combination treatment. Respiration. 2017; 94(1): 26–37.
  183. Paul GA, Gibbs JS, Boobis AR, et al. Bosentan decreases the plasma concentration of sildenafil when coprescribed in pulmonary hypertension. Br J Clin Pharmacol. 2005; 60(1): 107–112.
  184. Sidharta PN, Krähenbühl S, Dingemanse J. Pharmacokinetic and pharmacodynamic evaluation of macitentan , a novel endothelin receptor antagonist for the treatment of pulmonary arterial hypertension. Expert Opin Drug Metab Toxicol. 2015; 11(3): 437–449.
  185. Sardana M, Moll M, Farber HW. Pharmacokinetic drug evaluation of selexipag for the treatment of pulmonary arterial hypertension. Expert Opin Drug Metab Toxicol. 2016; 12(12): 1513–1520.
  186. Axelsen LN, Poggesi I, Rasschaert F, et al. Clopidogrel, a CYP2C8 inhibitor, causes a clinically relevant increase in the systemic exposure to the active metabolite of selexipag in healthy subjects. Br J Clin Pharmacol. 2021; 87(1): 119–128.
  187. Chaumais MC, Perrin S, Sitbon O, et al. Pharmacokinetic evaluation of sildenafil as a pulmonary hypertension treatment. Expert Opin Drug Metab Toxicol. 2013; 9(9): 1193–1205.
  188. Rehse K, Scheffler H, Reitner N. Interaction of Viagra with the NO donors molsidomine and RE 2047 with regard to antithrombotic and blood pressure lowering activities. Arch Pharm (Weinheim). 1999; 332(5): 182–184, doi: 10.1002/(sici)1521-4184(19995)332:5<182::aid-ardp182>3.0.co;2-z.
  189. Wrishko RE, Dingemanse J, Yu A, et al. Pharmacokinetic interaction between tadalafil and bosentan in healthy male subjects. J Clin Pharmacol. 2008; 48(5): 610–618.
  190. Frey R, Becker C, Saleh S, et al. Clinical pharmacokinetic and pharmacodynamic profile of riociguat. Clin Pharmacokinet. 2018; 57(6): 647–661.
  191. National Pulmonary Hypertension Centres of the UK and Ireland. Consensus statement on the management of pulmonary hypertension in clinical practice in the UK and Ireland. Heart. 2008; 94(Suppl 1): i1–41.
  192. Bosch L, Lam CSP, Gong L, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail. 2017; 19(12): 1664–1671.
  193. Tedford RJ, Hassoun PM, Mathai SC, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012; 125(2): 289–297.
  194. Pellegrini P, Rossi A, Pasotti M, et al. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest. 2014; 145(5): 1064–1070.
  195. Dell'Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin. 2012; 30(2): 167–187.
  196. Sanz J, Sánchez-Quintana D, Bossone E, et al. Anatomy, function, and dysfunction of the right ventricle: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019; 73(12): 1463–1482.
  197. Dreyfus GD, Martin RP, Chan KM, et al. Functional tricuspid regurgitation: a need to revise our understanding. J Am Coll Cardiol. 2015; 65(21): 2331–2336.
  198. Muraru D, Parati G, Badano L. The importance and the challenges of predicting the progression of functional tricuspid regurgitation. JACC Cardiovasc Imaging. 2020; 13(8): 1652–1654.
  199. Andersen MJ, Hwang SJ, Kane GC, et al. Enhanced pulmonary vasodilator reserve and abnormal right ventricular: pulmonary artery coupling in heart failure with preserved ejection fraction. Circ Heart Fail. 2015; 8(3): 542–550.
  200. Caravita S, Dewachter C, Soranna D, et al. Haemodynamics to predict outcome in pulmonary hypertension due to left heart disease: a meta-analysis. Eur Respir J. 2018; 51(4): 1702427.
  201. Caravita S, Yerly P, Baratto C, et al. Noninvasive invasive pressure-flow relationship of the pulmonary circulation: bias and error. Eur Respir J. 2019; 54(5): 1900881.
  202. Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. Eur Respir J. 2019; 53(1): 1801916.
  203. Coghlan JG, Galiè N, Barberà JA, et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015; 373(9): 834–844.
  204. Hoeper MM, McLaughlin VV, Barberá JA, et al. Initial combination therapy with ambrisentan and tadalafil and mortality in patients with pulmonary arterial hypertension: a secondary analysis of the results from the randomised, controlled AMBITION study. Lancet Respir Med. 2016; 4(11): 894–901.
  205. Hoendermis ES, Liu LCY, Hummel YM, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. 2015; 36(38): 2565–2573.
  206. Guazzi M, Vicenzi M, Arena R, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011; 124(2): 164–174.
  207. Han MK, Bach DS, Hagan PG, et al. Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction. Chest. 2013; 143(6): 1699–1708.
  208. Ghofrani HA, Wiedemann R, Rose F, et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet. 2002; 360(9337): 895–900.
  209. Jaïs X, Brenot P, Bouvaist H, et al. Balloon pulmonary angioplasty versus riociguat for the treatment of inoperable chronic thromboembolic pulmonary hypertension (RACE): a multicentre, phase 3, open-label, randomised controlled trial and ancillary follow-up study. Lancet Respir Med. 2022; 10(10): 961–971.
  210. Boucly A, Savale L, Jaïs X, et al. Association between initial treatment strategy and long-term survival in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2021; 204(7): 842–854.
  211. Hoeper MM, Pausch C, Grünig E, et al. Temporal trends in pulmonary arterial hypertension: results from the COMPERA registry. Eur Respir J. 2022; 59(6): 2102024.
  212. Zelt JGE, Sugarman J, Weatherald J, et al. Mortality trends in pulmonary arterial hypertension in Canada: a temporal analysis of survival per ESC/ERS guideline era. Eur Respir J. 2022; 59(6): 2101552.
  213. Sitbon O, Sattler C, Bertoletti L, et al. Initial dual oral combination therapy in pulmonary arterial hypertension. Eur Respir J. 2016; 47(6): 1727–1736.
  214. Sitbon O, Cottin V, Canuet M, et al. Initial combination therapy of macitentan and tadalafil in pulmonary arterial hypertension. Eur Respir J. 2020; 56(3): 2000673.
  215. Chin KM, Sitbon O, Doelberg M, et al. Three- versus two-drug therapy for patients with newly diagnosed pulmonary arterial hypertension. J Am Coll Cardiol. 2021; 78(14): 1393–1403.
  216. Kramer T, Dumitrescu D, Gerhardt F, et al. Therapeutic potential of phosphodiesterase type 5 inhibitors in heart failure with preserved ejection fraction and combined post- and pre-capillary pulmonary hypertension. Int J Cardiol. 2019; 283: 152–158.
  217. Opitz CF, Hoeper MM, Gibbs JS, et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J Am Coll Cardiol. 2016; 68(4): 368–378.
  218. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013; 309(12): 1268–1277.
  219. Hoeper MM, Behr J, Held M, et al. Pulmonary hypertension in patients with chronic fibrosing idiopathic interstitial pneumonias. PLoS One. 2015; 10(12): e0141911.
  220. Nathan SD, Behr J, Collard HR, et al. Riociguat for idiopathic interstitial pneumonia-associated pulmonary hypertension (RISE-IIP): a randomised, placebo-controlled phase 2b study. Lancet Respir Med. 2019; 7(9): 780–790.
  221. Zisman DA, Schwarz M, Anstrom KJ, et al. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010; 363(7): 620–628.
  222. Richeldi L, Kolb M, Jouneau S, et al. Nintedanib plus sildenafil in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2018; 379(18): 1722–1731.
  223. Jais X, Brenot P, Bouvaist H, et al. Late breaking abstract - balloon pulmonary angioplasty versus riociguat for the treatment of inoperable chronic thromboembolic pulmonary hypertension: results from the randomised controlled RACE study. Eur Respir J. 2019; 54(Suppl 63): RCT1885.
  224. Jaïs X, Brenot P, Bouvaist H, et al. Balloon pulmonary angioplasty versus riociguat for the treatment of inoperable chronic thromboembolic pulmonary hypertension (RACE): a multicentre, phase 3, open-label, randomised controlled trial and ancillary follow-up study. Lancet Respir Med. 2022; 10(10): 961–971.
  225. Wiedenroth CB, Ghofrani HA, Adameit MSD, et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulm Circ. 2018; 8(3): 2045894018783996.
  226. Hug KP, Coghlan JG, Cannon J, et al. Serial right heart catheter assessment between balloon pulmonary angioplasty sessions identify procedural factors that influence response to treatment. J Heart Lung Transplant. 2021; 40(10): 1223–1234.
  227. Koh ET, Lee P, Gladman DD, et al. Pulmonary hypertension in systemic sclerosis: an analysis of 17 patients. Br J Rheumatol. 1996; 35(10): 989–993.
  228. Lefèvre G, Dauchet L, Hachulla E, et al. Survival and prognostic factors in systemic sclerosis-associated pulmonary hypertension: a systematic review and meta-analysis. Arthritis Rheum. 2013; 65(9): 2412–2423.
  229. Hachulla E, Gressin V, Guillevin L, et al. Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum. 2005; 52(12): 3792–3800.
  230. Humbert M, Yaici A, de Groote P, et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: clinical characteristics at diagnosis and long-term survival. Arthritis Rheum. 2011; 63(11): 3522–3530.
  231. Kiely DG, Lawrie A, Humbert M. Screening strategies for pulmonary arterial hypertension. Eur Heart J Suppl. 2019; 21(Suppl K): K9–K20.
  232. Coghlan JG, Denton CP, Grünig E, et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis. 2014; 73(7): 1340–1349.
  233. Thakkar V, Stevens W, Prior D, et al. The inclusion of N-terminal pro-brain natriuretic peptide in a sensitive screening strategy for systemic sclerosis-related pulmonary arterial hypertension: a cohort study. Arthritis Res Ther. 2013; 15(6): R193.
  234. Hao Y, Thakkar V, Stevens W, et al. A comparison of the predictive accuracy of three screening models for pulmonary arterial hypertension in systemic sclerosis. Arthritis Res Ther. 2015; 17: 7.
  235. Vandecasteele E, Drieghe B, Melsens K, et al. Screening for pulmonary arterial hypertension in an unselected prospective systemic sclerosis cohort. Eur Respir J. 2017; 49(5): 1600227.
  236. Morrisroe K, Stevens W, Sahhar J, et al. Epidemiology and disease characteristics of systemic sclerosis-related pulmonary arterial hypertension: results from a real-life screening programme. Arthritis Res Ther. 2017; 19(1): 42.
  237. Pauling JD, McHugh NJ. Evaluating factors influencing screening for pulmonary hypertension in systemic sclerosis: does disparity between available guidelines influence clinical practice? Clin Rheumatol. 2012; 31(2): 357–361.
  238. Mangat P, Conron M, Gabbay E, et al. Scleroderma lung disease, variation in screening, diagnosis and treatment practices between rheumatologists and respiratory physicians. Intern Med J. 2010; 40(7): 494–502.
  239. Mihai C, Antic M, Dobrota R, et al. Factors associated with disease progression in early-diagnosed pulmonary arterial hypertension associated with systemic sclerosis: longitudinal data from the DETECT cohort. Ann Rheum Dis. 2018; 77(1): 128–132.
  240. Morrisroe K, Huq M, Stevens W, et al. Risk factors for development of pulmonary arterial hypertension in Australian systemic sclerosis patients: results from a large multicenter cohort study. BMC Pulm Med. 2016; 16(1): 134.
  241. Semalulu T, Rudski L, Huynh T, et al. An evidence-based strategy to screen for pulmonary arterial hypertension in systemic sclerosis. Semin Arthritis Rheum. 2020; 50(6): 1421–1427.
  242. Smith V, Vanhaecke A, Vandecasteele E, et al. Nailfold videocapillaroscopy in systemic sclerosis-related pulmonary arterial hypertension: a systematic literature review. J Rheumatol. 2020; 47(6): 888–895.
  243. Kylhammar D, Hesselstrand R, Nielsen S, et al. Angiogenic and inflammatory biomarkers for screening and follow-up in patients with pulmonary arterial hypertension. Scand J Rheumatol. 2018; 47(4): 319–324.
  244. Santaniello A, Casella R, Vicenzi M, et al. Cardiopulmonary exercise testing in a combined screening approach to individuate pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford). 2020; 59(7): 1581–1586.
  245. Hagger D, Condliffe R, Woodhouse N, et al. Ventricular mass index correlates with pulmonary artery pressure and predicts survival in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology (Oxford). 2009; 48(9): 1137–1142.
  246. Rajaram S, Swift AJ, Capener D, et al. Comparison of the diagnostic utility of cardiac magnetic resonance imaging, computed tomography, and echocardiography in assessment of suspected pulmonary arterial hypertension in patients with connective tissue disease. J Rheumatol. 2012; 39(6): 1265–1274.
  247. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016; 37(1): 67–119.
  248. Khanna D, Gladue H, Channick R, et al. Recommendations for screening and detection of connective tissue disease-associated pulmonary arterial hypertension. Arthritis Rheum. 2013; 65(12): 3194–3201.
  249. Weatherald J, Montani D, Jevnikar M, et al. Screening for pulmonary arterial hypertension in systemic sclerosis. Eur Respir Rev. 2019; 28(153): 190023.
  250. Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2015; 46(4): 903–975.
  251. Benza RL, Gomberg-Maitland M, Elliott CG, et al. Predicting survival in patients with pulmonary arterial hypertension: the REVEAL risk score calculator 2.0 and comparison with ESC/ERS-based risk assessment strategies. Chest. 2019; 156(2): 323–337.
  252. Zelt JGE, Hossain A, Sun LY, et al. Incorporation of renal function in mortality risk assessment for pulmonary arterial hypertension. J Heart Lung Transplant. 2020; 39(7): 675–685.
  253. Kylhammar D, Kjellström B, Hjalmarsson C, et al. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. 2018; 39(47): 4175–4181.
  254. Hoeper MM, Kramer T, Pan Z, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J. 2017; 50(2): 1700740.
  255. Boucly A, Weatherald J, Savale L, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017; 50(2): 1700889.
  256. Kylhammar D, Hjalmarsson C, Hesselstrand R, et al. Predicting mortality during long-term follow-up in pulmonary arterial hypertension. ERJ Open Res. 2021; 7(2): 00837-2020.
  257. Sitbon O, Chin KM, Channick RN, et al. Risk assessment in pulmonary arterial hypertension: Insights from the GRIPHON study. J Heart Lung Transplant. 2020; 39(4): 300–309.
  258. Anderson JJ, Lau EM, Lavender M, et al. Retrospective validation of the REVEAL 2.0 risk score with the Australian and New Zealand pulmonary hypertension registry cohort. Chest. 2020; 157(1): 162–172.
  259. D'Alto M, Badagliacca R, Lo Giudice F, et al. Hemodynamics and risk assessment 2 years after the initiation of upfront ambrisentan‒tadalafil in pulmonary arterial hypertension. J Heart Lung Transplant. 2020; 39(12): 1389–1397.
  260. Tonelli AR, Sahay S, Gordon KW, et al. Impact of inhaled treprostinil on risk stratification with noninvasive parameters: a post hoc analysis of the TRIUMPH and BEAT studies. Pulm Circ. 2020; 10(4): 2045894020977025.
  261. Olsson KM, Richter MJ, Kamp JC, et al. Intravenous treprostinil as an add-on therapy in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2019; 38(7): 748–756.
  262. White RJ, Jerjes-Sanchez C, Bohns Meyer GM, et al. Combination therapy with oral treprostinil for pulmonary arterial hypertension. A double-blind placebo-controlled clinical trial. Am J Respir Crit Care Med. 2020; 201(6): 707–717.
  263. Humbert M, Farber HW, Ghofrani HA, et al. Risk assessment in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019; 53(6): 1802004.
  264. Rosenkranz S, Gibbs JS, Wachter R, et al. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016; 37(12): 942–954.
  265. Vachiéry JL, Tedford RJ, Rosenkranz S, et al. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019; 53(1): 1801897.
  266. Lewis GD, Shah R, Shahzad K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007; 116(14): 1555–1562.
  267. Vachiéry JL, Delcroix M, Al-Hiti H, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J. 2018; 51(2): 1701886.
  268. Kaluski E, Cotter G, Leitman M, et al. Clinical and hemodynamic effects of bosentan dose optimization in symptomatic heart failure patients with severe systolic dysfunction, associated with secondary pulmonary hypertension--a multi-center randomized study. Cardiology. 2008; 109(4): 273–280.
  269. Koller B, Steringer-Mascherbauer R, Ebner CH, et al. Pilot study of endothelin receptor blockade in heart failure with diastolic dysfunction and pulmonary hypertension (BADDHY-trial). Heart Lung Circ. 2017; 26(5): 433–441.
  270. Bermejo J, Yotti R, García-Orta R, et al. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J. 2018; 39(15): 1255–1264.
  271. Wu X, Yang Te, Zhou Qi, et al. Additional use of a phosphodiesterase 5 inhibitor in patients with pulmonary hypertension secondary to chronic systolic heart failure: a meta-analysis. Eur J Heart Fail. 2014; 16(4): 444–453.
  272. Cao JY, Wales KM, Cordina R, et al. Pulmonary vasodilator therapies are of no benefit in pulmonary hypertension due to left heart disease: A meta-analysis. Int J Cardiol. 2018; 273: 213–220.
  273. Bonderman D, Ghio S, Felix SB, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013; 128(5): 502–511.
  274. Dumitrescu D, Seck C, Möhle L, et al. Therapeutic potential of sildenafil in patients with heart failure and reactive pulmonary hypertension. Int J Cardiol. 2012; 154(2): 205–206.
  275. Zeder K, Avian A, Bachmaier G, et al. Elevated pulmonary vascular resistance predicts mortality in COPD patients. Eur Respir J. 2021; 58(2): 2100944.
  276. Vitulo P, Stanziola A, Confalonieri M, et al. Sildenafil in severe pulmonary hypertension associated with chronic obstructive pulmonary disease: A randomized controlled multicenter clinical trial. J Heart Lung Transplant. 2017; 36(2): 166–174.
  277. Vizza CD, Hoeper MM, Huscher D, et al. Pulmonary hypertension in patients with COPD: results from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Chest. 2021; 160(2): 678–689.
  278. Waxman A, Restrepo-Jaramillo R, Thenappan T, et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med. 2021; 384(4): 325–334.
  279. Ejiri K, Ogawa A, Fujii S, et al. Vascular injury is a major cause of lung injury after balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2018; 11(12): e005884.
  280. Sugimura K, Fukumoto Y, Satoh K, et al. Percutaneous transluminal pulmonary angioplasty markedly improves pulmonary hemodynamics and long-term prognosis in patients with chronic thromboembolic pulmonary hypertension. Circ J. 2012; 76(2): 485–488.
  281. Ogawa A, Satoh T, Fukuda T, et al. Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension: results of a multicenter registry. Circ Cardiovasc Qual Outcomes. 2017; 10(11): e004029.
  282. Inami T, Kataoka M, Yanagisawa R, et al. Long-term outcomes after percutaneous transluminal pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Circulation. 2016; 134(24): 2030–2032.
  283. Brenot P, Jaïs X, Taniguchi Yu, et al. French experience of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019; 53(5): 1802095.
  284. Darocha S, Pietura R, Pietrasik A, et al. Improvement in quality of life and hemodynamics in chronic thromboembolic pulmonary hypertension treated with balloon pulmonary angioplasty. Circ J. 2017; 81(4): 552–557.
  285. Fukui S, Ogo T, Morita Y, et al. Right ventricular reverse remodelling after balloon pulmonary angioplasty. Eur Respir J. 2014; 43(5): 1394–1402.
  286. Kataoka M, Inami T, Kawakami T, et al. Percutaneous transluminal pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2012; 5(6): 756–762.
  287. Mizoguchi H, Ogawa A, Munemasa M, et al. Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2012; 5(6): 748–755.
  288. Olsson KM, Wiedenroth CB, Kamp JC, et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Respir J. 2017; 49(6): 1602409.
  289. Ghofrani HA, D'Armini AM, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013; 369(4): 319–329.
  290. Sadushi-Kolici R, Jansa P, Kopec G, et al. Subcutaneous treprostinil for the treatment of severe non-operable chronic thromboembolic pulmonary hypertension (CTREPH): a double-blind, phase 3, randomised controlled trial. Lancet Respir Med. 2019; 7(3): 239–248.
  291. Ghofrani HA, Simonneau G, D'Armini AM, et al. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir Med. 2017; 5(10): 785–794.
  292. Simonneau G, D'Armini AM, Ghofrani HA, et al. Predictors of long-term outcomes in patients treated with riociguat for chronic thromboembolic pulmonary hypertension: data from the CHEST-2 open-label, randomised, long-term extension trial. Lancet Respir Med. 2016; 4(5): 372–380.