Vol 80, Supp. V (2022): Zeszyty Edukacyjne 5/2022
Wytyczne ESC
Published online: 2023-03-30

open access

Page views 278
Article views/downloads 1364
Get Citation

Connect on Social Media

Connect on Social Media

Wytyczne ESC 2022 dotyczące kardioonkologii. Suplement

Alexander R Lyon, Teresa López-Fernández, Liam S. Couch, Riccardo Asteggiano, Marianne C. Aznar, Jutta Bergler-Klein, Giuseppe Boriani, Daniela Cardinale, Raul Cordoba, Bernard Cosyns, David J. Cutter, Evandro de Azambuja, Rudolf A. de Boer, Susan F. Dent, Dimitrios Farmakis, Sofie A. Gevaert, Diana A. Gorog, Joerg Herrmann, Daniel Lenihan, Javid Moslehi, Brenda Moura, Sonja S. Salinger, Richard Stephens, Thomas M. Suter, Sebastian Szmit, Juan Tamargo, Paaladinesh Thavendiranathan, Carlo G. Tocchetti, Peter van der Meer, Helena J.H. van der Pal
DOI: 10.33963/v.kp.92517

Abstract

Not available

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Reeh J, Therming CB, Heitmann M, et al. Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. Eur Heart J. 2019; 40(18): 1426–1435.
  2. Aboyans V, Criqui M, Abraham P, et al. Measurement and Interpretation of the Ankle-Brachial Index: a scientific statement from the American Heart Association. Circulation. 2012; 126(24): 2890–2909.
  3. Willeit P, Tschiderer L, Allara E, et al. PROG-IMT and the Proof-ATHERO Study Groups. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation. 2020; 142(7): 621–642.
  4. Hijmering ML, Stroes ES, Pasterkamp G, et al. Variability of flow mediated dilation: consequences for clinical application. Atherosclerosis. 2001; 157(2): 369–373.
  5. De Roos NM, Bots ML, Schouten EG, et al. Within-subject variability of flow-mediated vasodilation of the brachial artery in healthy men and women: implications for experimental studies. Ultrasound Med Biol. 2003; 29(3): 401–406.
  6. Bots ML, Westerink J, Rabelink TJ, et al. Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response. Eur Heart J. 2005; 26(4): 363–368.
  7. Moerland M, Kales AJ, Schrier L, et al. Evaluation of the EndoPAT as a tool to assess endothelial function. Int J Vasc Med. 2012; 2012: 904141.
  8. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012; 33(22): 2771–2782b.
  9. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Association. Stroke. 2018; 49(3): e46–e110.
  10. Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013; 44(7): 2064–2089.
  11. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol. 2018; 72(18): 2231–2264.
  12. Collet J-P, Thiele H, Barbato E, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021; 42(14): 1289–1367.
  13. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018; 39(2): 119–177.
  14. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2020; 41(3): 407–477.
  15. Aboyans V, Ricco JB, Bartelink ML, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018; 39: 763–816.
  16. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39(33): 3021–3104.
  17. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42(34): 3227–3337.
  18. van den Born BJH, Lip GYH, Brguljan-Hitij J, et al. ESC Council on hypertension position document on the management of hypertensive emergencies. Eur Heart J Cardiovasc Pharmacother. 2019; 5(1): 37–46.
  19. Vandenberk B, Vandael E, Robyns T, et al. Which QT correction formulae to use for QT monitoring? J Am Heart Assoc. 2016; 5(6).
  20. Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021; 42(35): 3427–3520.
  21. Brugada J, Katritsis DG, Arbelo E, et al. 2019 ESC guidelines for the management of patients with supraventricular tachycardia: the task force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). Eur Heart J. 2020; 41(5): 655–720.
  22. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022; 43(40): 3997–4126.
  23. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021; 42(5): 373–498.
  24. Herrmann J, Lenihan D, Armenian S, et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J. 2022; 43(4): 280–299.
  25. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–3726.
  26. Jaffe AS, Vasile VC, Milone M, et al. Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol. 2011; 58(17): 1819–1824.
  27. Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated cardiac troponin T in patients with skeletal myopathies. J Am Coll Cardiol. 2018; 71(14): 1540–1549.
  28. Delombaerde D, Vervloet D, Franssen C, et al. Clinical implications of isolated troponinemia following immune checkpoint inhibitor therapy. ESMO Open. 2021; 6(4): 100216.
  29. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018; 72(24): 3158–3176.
  30. Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society. Eur J Heart Fail. 2020; 22(11): 1945–1960.
  31. Armenian SH, Lacchetti C, Lenihan D, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017; 35(8): 893–911.
  32. Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020; 31(2): 171–190.
  33. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022; 43(38): 3618–3731.
  34. Zamorano J, Lancellotti P, Muñoz DR, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J. 2016; 37(36): 2768–2801.
  35. Salz T, Zabor EC, de Nully Brown P, et al. Preexisting cardiovascular risk and subsequent heart failure among non-Hodgkin lymphoma survivors. J Clin Oncol. 2017; 35(34): 3837–3843.
  36. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015; 131(22): 1981–1988.
  37. Thavendiranathan P, Abdel-Qadir H, Fischer HD, et al. Risk-imaging mismatch in cardiac imaging practices for women receiving systemic therapy for early-stage breast cancer: a population-based cohort study. J Clin Oncol. 2018; 36(30): 2980–2987.
  38. Florido R, Smith KL, Cuomo KK, et al. Cardiotoxicity from human epidermal growth factor receptor-2 (HER2) targeted therapies. J Am Heart Assoc. 2017; 6(9): e006915.
  39. de Azambuja E, Procter MJ, van Veldhuisen DJ, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol. 2007; 25(25): 3859–3865.
  40. Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol. 2018; 2: 13.
  41. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015; 33(35): 4210–4218.
  42. Hamnvik OPR, Choueiri TK, Turchin A, et al. Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer. 2015; 121(2): 311–319.
  43. Aghel N, Lipton JH, Atenafu EG, et al. Cardiovascular events after exposure to nilotinib in chronic myeloid leukemia: long-term follow-up. Clin Lymphoma Myeloma Leuk. 2017; 17(12): 870–878.e1.
  44. Dahlén T, Edgren G, Lambe M, et al. Cardiovascular events associated with use of tyrosine kinase inhibitors in chronic myeloid leukemia: a population-based cohort study. Ann Intern Med. 2016; 165(3): 161–166.
  45. Lipton JH, Chuah C, Guerci-Bresler A, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016; 17(5): 612–621.
  46. Brown JR, Moslehi J, O'Brien S, et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica. 2017; 102(10): 1796–1805.
  47. Mincu RI, Mahabadi AA, Michel L, et al. Cardiovascular adverse events associated with BRAF and MEK inhibitors: a systematic review and meta-analysis. JAMA Netw Open. 2019; 2(8): e198890.
  48. Chen JH, Lenihan DJ, Phillips SE, et al. Cardiac events during treatment with proteasome inhibitor therapy for multiple myeloma. Cardiooncology. 2017; 3: 4.
  49. Cornell RF, Ky B, Weiss BM, et al. Prospective study of cardiac events during proteasome inhibitor therapy for relapsed multiple myeloma. J Clin Oncol. 2019; 37(22): 1946–1955.
  50. Li W, Garcia D, Cornell RF, et al. Cardiovascular and thrombotic complications of novel multiple myeloma therapies: a review. JAMA Oncol. 2017; 3(7): 980–988.
  51. Ball S, Ghosh RK, Wongsaengsak S, et al. Cardiovascular toxicities of immune checkpoint inhibitors: JACC review topic of the week. J Am Coll Cardiol. 2019; 74(13): 1714–1727.
  52. Awadalla M, Golden DL, Mahmood SS, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018; 71(16): 1755–1764.
  53. Alibhai SMH, Duong-Hua M, Sutradhar R, et al. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J Clin Oncol. 2009; 27(21): 3452–3458.
  54. Bosco C, Bosnyak Z, Malmberg A, et al. Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer: a meta-analysis. Eur Urol. 2015; 68(3): 386–396.
  55. Slamon DJ, Neven P, Chia S, et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018; 36(24): 2465–2472.
  56. Alvi RM, Frigault MJ, Fradley MG, et al. Cardiovascular events among adults treated with chimeric antigen receptor t-cells (CAR-T). J Am Coll Cardiol. 2019; 74(25): 3099–3108.
  57. Lefebvre B, Kang Yu, Smith AM, et al. Cardiovascular effects of CAR R cell therapy: a retrospective study. JACC CardioOncol. 2020; 2(2): 193–203.
  58. Jaworski C, Mariani JA, Wheeler G, et al. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013; 61(23): 2319–2328.
  59. van Nimwegen FA, Schaapveld M, Janus CPM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med. 2015; 175(6): 1007–1017.
  60. Armenian SH, Sun CL, Vase T, et al. Cardiovascular risk factors in hematopoietic cell transplantation survivors: role in development of subsequent cardiovascular disease. Blood. 2012; 120(23): 4505–4512.
  61. Chow EJ, Baker KS, Lee SJ, et al. Influence of conventional cardiovascular risk factors and lifestyle characteristics on cardiovascular disease after hematopoietic cell transplantation. J Clin Oncol. 2014; 32(3): 191–198.
  62. Bhatia S. Genetics of anthracycline cardiomyopathy in cancer survivors. JACC CardioOncol. 2020; 2(4): 539–552.
  63. Aminkeng F, Bhavsar AP, Visscher H, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015; 47(9): 1079–1084.
  64. Blanco JG, Sun CL, Landier W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children's Oncology Group. J Clin Oncol. 2012; 30(13): 1415–1421.
  65. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019; 140(1): 31–41.
  66. Wojnowski L, Kulle B, Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005; 112(24): 3754–3762.
  67. Kattih B, Shirvani A, Klement P, et al. IDH1/2 mutations in acute myeloid leukemia patients and risk of coronary artery disease and cardiac dysfunction-a retrospective propensity score analysis. Leukemia. 2021; 35(5): 1301–1316.
  68. Bosch X, Rovira M, Sitges M, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013; 61(23): 2355–2362.
  69. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018; 71(20): 2281–2290.
  70. Cardinale D, Ciceri F, Latini R, et al. Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur J Cancer. 2018; 94: 126–137.
  71. Akpek M, Ozdogru I, Sahin O, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015; 17(1): 81–89.
  72. Acar Z, Kale A, Turgut M, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011; 58(9): 988–989.
  73. Gulati G, Heck S, Ree A, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016; 37(21): 1671–1680.
  74. Gulati G, Heck SL, Røsjø H, et al. Neurohormonal blockade and circulating cardiovascular biomarkers during anthracycline therapy in breast cancer patients: results from the PRADA (prevention of cardiac dysfunction during adjuvant breast cancer therapy) study. J Am Heart Assoc. 2017; 6(11): e006513.
  75. Heck SL, Mecinaj A, Ree AH, et al. Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy (PRADA): extended follow-up of a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Circulation. 2021; 143(25): 2431–2440.
  76. Guglin M, Krischer J, Tamura R, et al. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J Am Coll Cardiol. 2019; 73(22): 2859–2868.
  77. Pituskin E, Mackey JR, Koshman S, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017; 35(8): 870–877.
  78. Boekhout AH, Gietema JA, Milojkovic Kerklaan B, et al. Angiotensin ii-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncol. 2016; 2(8): 1030–1037.
  79. Huang S, Zhao Q, Yang ZG, et al. Protective role of beta-blockers in chemotherapy-induced cardiotoxicity-a systematic review and meta-analysis of carvedilol. Heart Fail Rev. 2019; 24(3): 325–333.
  80. Vaduganathan M, Hirji SA, Qamar A, et al. Efficacy of neurohormonal therapies in preventing cardiotoxicity in patients with cancer undergoing chemotherapy. JACC CardioOncol. 2019; 1(1): 54–65.
  81. Caspani F, Tralongo AC, Campiotti L, et al. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med. 2021; 16(2): 477–486.
  82. Macedo AVS, Hajjar LA, Lyon AR, et al. Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC CardioOncol. 2019; 1(1): 68–79.
  83. Li X, Li Y, Zhang T, et al. Role of cardioprotective agents on chemotherapy-induced heart failure: A systematic review and network meta-analysis of randomized controlled trials. Pharmacol Res. 2020; 151: 104577.
  84. Fang K, Zhang Y, Liu W, et al. Effects of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use on cancer therapy-related cardiac dysfunction: a meta-analysis of randomized controlled trials. Heart Fail Rev. 2021; 26(1): 101–109.
  85. Alberts DS, Muggia FM, Carmichael J, et al. Efficacy and safety of liposomal anthracyclines in phase I/II clinical trials. Semin Oncol. 2004; 31(6 Suppl 13): 53–90.
  86. Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat. 2016; 29: 90–106.
  87. BC Cancer. DRUG NAME: doxorubicin pegylated liposomal. BC Cancer Drug Manual 2020. http://www.bccancer.bc.ca/drug-database-site/DrugIndex/Doxorubicinpegylatedliposomal_monograph.pdf.
  88. Chemocare. Doxorubicin Liposomal – Drug Information n.d.
  89. O'Brien MER, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004; 15(3): 440–449.
  90. Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001; 19(5): 1444–1454.
  91. Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000; 11(8): 1029–1033.
  92. Skubitz KM, Blaes AH, Konety SH, et al. Cardiac safety profile of patients receiving high cumulative doses of pegylated-liposomal doxorubicin: use of left ventricular ejection fraction is of unproven value. Cancer Chemother Pharmacol. 2017; 80(4): 787–798.
  93. Blank N, Laskov I, Kessous R, et al. Absence of cardiotoxicity with prolonged treatment and large accumulating doses of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol. 2017; 80(4): 737–743.
  94. Yildirim Y, Gultekin E, Avci ME, et al. Cardiac safety profile of pegylated liposomal doxorubicin reaching or exceeding lifetime cumulative doses of 550 mg/m2 in patients with recurrent ovarian and peritoneal cancer. Int J Gynecol Cancer. 2008; 18(2): 223–227.
  95. Gabizon AA, Lyass O, Berry GJ, et al. Cardiac safety of pegylated liposomal doxorubicin (Doxil/Caelyx) demonstrated by endomyocardial biopsy in patients with advanced malignancies. Cancer Invest. 2004; 22(5): 663–669.
  96. Kesterson JP, Odunsi K, Lele S. High cumulative doses of pegylated liposomal doxorubicin are not associated with cardiac toxicity in patients with gynecologic malignancies. Chemotherapy. 2010; 56(2): 108–111.
  97. Okwuosa TM, Morgans A, Rhee JW, et al. Impact of hormonal therapies for treatment of hormone-dependent cancers (breast and prostate) on the cardiovascular system: effects and modifications: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2021; 14(3): e000082.
  98. Barber M, Nguyen LS, Wassermann J, et al. Cardiac arrhythmia considerations of hormone cancer therapies. Cardiovasc Res. 2019; 115(5): 878–894.
  99. Salem JE, Nguyen LS, Moslehi JJ, et al. Anticancer drug-induced life-threatening ventricular arrhythmias: a World Health Organization pharmacovigilance study. Eur Heart J. 2021; 42(38): 3915–3928.
  100. AZCERT. CredibleMeds.org n.d.
  101. FDA. Drugs@FDA: FDA-Approved Drugs. US Food and Drug Administration, n.d.
  102. EMA. Medicines | European Medicines Agency. European Medicines Agency Science Medicines Health, n.d.
  103. Alblooshi R, Kanfar S, Lord B, et al. Clinical prevalence and outcome of cardiovascular events in the first 100 days postallogeneic hematopoietic stem cell transplant. Eur J Haematol. 2021; 106(1): 32–39.
  104. Rotz SJ, Ryan TD, Hayek SS. Cardiovascular disease and its management in children and adults undergoing hematopoietic stem cell transplantation. J Thromb Thrombolysis. 2021; 51(4): 854–869.
  105. Oliveira GH, Al-Kindi SG, Guha A, et al. Cardiovascular risk assessment and management of patients undergoing hematopoietic cell transplantation. Bone Marrow Transplant. 2021; 56(3): 544–551.
  106. Tichelli A, Bucher C, Rovó A, et al. Premature cardiovascular disease after allogeneic hematopoietic stem-cell transplantation. Blood. 2007; 110(9): 3463–3471.
  107. López-Fernández T, Vadillo IS, de la Guía AL, et al. Cardiovascular issues in hematopoietic stem cell transplantation (HSCT). Curr Treat Options Oncol. 2021; 22(6): 51.
  108. Ohmoto A, Fuji S. Cardiac complications associated with hematopoietic stem-cell transplantation. Bone Marrow Transplant. 2021; 56(11): 2637–2643.
  109. Tamargo J. Cardiovascular drugs — from A to Z. In: Kaski JC, Kjeldsen KP. ed. The ESC Handbook on Cardiovascular Pharmacotherapy. 2nd ed. Oxford University Press, Oxford 2019: 413–812.
  110. Preston CL. Stockley’s drug interactions: a source book of interactions, their mechanisms, clinical importance and management. 12th ed. Pharmaceutical Press, London 2020.
  111. Kaski JK, Haywood C, Mahida S, Baker S, Khong T, Tamargo J. Drugs in cardiology. Oxford University Press, Oxford 2010.
  112. Brunton L, Knollmann B, Dandan RH. Goodman and Gilman’s. The pharmacological basis of therapeutics. McGraw - H Hill Education, New York 2018.
  113. Alexandre J, Salem JE, Moslehi J, et al. Identification of anticancer drugs associated with atrial fibrillation: analysis of the WHO pharmacovigilance database. Eur Heart J Cardiovasc Pharmacother. 2021; 7(4): 312–320.
  114. Amant F, Berveiller P, Boere IA, et al. Gynecologic cancers in pregnancy: guidelines based on a third international consensus meeting. Ann Oncol. 2019; 30(10): 1601–1612.