Vol 80, Supp. VI (2022): Zeszyty Edukacyjne 6/2022
Wytyczne ESC
Published online: 2023-03-15

open access

Page views 500
Article views/downloads 587
Get Citation

Connect on Social Media

Connect on Social Media

Wytyczne ESC/ERS 2022 dotyczące rozpoznawania i leczenia nadciśnienia płucnego

Marc Humbert, Gabor Kovacs, Marius M. Hoeper, Roberto Badagliacca, Rolf M.F. Berger, Margarita Brida, Jørn Carlsen, Andrew J.S. Coats, Pilar Escribano-Subias, Pisana Ferrari, Diogenes S. Ferreira, Hossein Ardeschir Ghofrani, George Giannakoulas, David G. Kiely, Eckhard Mayer, Gergely Meszaros, Blin Nagavci, Karen M. Olsson, Joanna Pepke-Zaba, Jennifer K. Quint, Göran Rådegran, Gerald Simonneau, Olivier Sitbon, Thomy Tonia, Mark Toshner, Jean-Luc Vachiery, Anton Vonk Noordegraaf, Marion Delcroix, Stephan Rosenkranz
DOI: 10.33963/v.kp.92261

Abstract

Not available

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019; 53(1): 1801913.
  2. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011; 64(4): 383–394.
  3. Alonso-Coello P, Oxman AD, Moberg J, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ. 2016; 353: i2089–167.e10.
  4. Nagavci B, Tonia T, Roche N, et al. European Respiratory Society clinical practice guidelines: methodological guidance. ERJ Open Res. 2022; 8(1): 00655–2021.
  5. Schünemann HB, Brożek J, Guyatt G, et al. GRADE handbook for grading quality of evidence and strength of recommendations. The GRADE Working Group. 2013.
  6. Miravitlles M, Tonia T, Rigau D, et al. New era for European Respiratory Society clinical practice guidelines: joining efficiency and high methodological standards. Eur Respir J. 2018; 51(3): 1800221.
  7. Kovacs G, Berghold A, Scheidl S, et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009; 34(4): 888–894.
  8. Kovacs G, Olschewski A, Berghold A, et al. Pulmonary vascular resistances during exercise in normal subjects: a systematic review. Eur Respir J. 2012; 39(2): 319–328.
  9. Wolsk E, Bakkestrøm R, Thomsen JH, et al. The influence of age on hemodynamic parameters during rest and exercise in healthy individuals. JACC Heart Fail. 2017; 5(5): 337–346.
  10. Maron BA, Hess E, Maddox TM, et al. Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking program. Circulation. 2016; 133(13): 1240–1248.
  11. Douschan P, Kovacs G, Avian A, et al. Mild elevation of pulmonary arterial pressure as a predictor of mortality. Am J Respir Crit Care Med. 2018; 197(4): 509–516.
  12. Kolte D, Lakshmanan S, Jankowich MD, et al. Mild pulmonary hypertension is associated with increased mortality: a systematic review and meta-analysis. J Am Heart Assoc. 2018; 7(18): e009729.
  13. Maron BA, Brittain EL, Hess E, et al. Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the veterans affairs clinical assessment, reporting, and tracking program. Lancet Respir Med. 2020; 8(9): 873–884.
  14. Xanthouli P, Jordan S, Milde N, et al. Haemodynamic phenotypes and survival in patients with systemic sclerosis: the impact of the new definition of pulmonary arterial hypertension. Ann Rheum Dis. 2020; 79(3): 370–378.
  15. Paulus WJ, Tschöpe C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007; 28(20): 2539–2550.
  16. Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019; 40(40): 3297–3317.
  17. Zeder K, Banfi C, Steinrisser-Allex G, et al. Diagnostic, prognostic and differential-diagnostic relevance of pulmonary hemodynamics during exercise - a systematic review. Eur Respir J. 2022 [Epub ahead of print]; 60(4): 2103181.
  18. Ho JE, Zern EK, Lau ES, et al. Exercise pulmonary hypertension predicts clinical outcomes in patients with dyspnea on effort. J Am Coll Cardiol. 2020; 75(1): 17–26.
  19. Stamm A, Saxer S, Lichtblau M, et al. Exercise pulmonary haemodynamics predict outcome in patients with systemic sclerosis. Eur Respir J. 2016; 48(6): 1658–1667.
  20. Hasler ED, Müller-Mottet S, Furian M, et al. Pressure-flow during exercise catheterization predicts survival in Pulmonary hypertension. Chest. 2016; 150(1): 57–67.
  21. Lewis GD, Murphy RM, Shah RV, et al. Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes. Circ Heart Fail. 2011; 4(3): 276–285.
  22. Zeder K, Avian A, Bachmaier G, et al. Exercise pulmonary resistances predict long-term survival in systemic sclerosis. Chest. 2021; 159(2): 781–790.
  23. Eisman AS, Shah RV, Dhakal BP, et al. Pulmonary capillary wedge pressure patterns during exercise predict exercise capacity and incident heart failure. Circ Heart Fail. 2018; 11(5): e004750.
  24. Bentley RF, Barker M, Esfandiari S, et al. Normal and abnormal relationships of pulmonary artery to wedge pressure during exercise. J Am Heart Assoc. 2020; 9(22): e016339.
  25. Galiè N, Humbert M, Vachiery JL, et al. ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015; 46(4): 903–975.
  26. Galiè N, Humbert M, Vachiery JL, et al. ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016; 37(1): 67–119.
  27. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–3726.
  28. Vahanian A, Beyersdorf F, Praz F, et al. ESC/EACTS Scientific Document Group. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur J Cardiothorac Surg. 2021; 60(4): 727–800.
  29. Hoeper MM, Humbert M, Souza R, et al. A global view of pulmonary hypertension. Lancet Respir Med. 2016; 4(4): 306–322.
  30. NHS Digital. National Audit of Pulmonary Hypertension 10th Annual Report, Great Britain, 2018-19. https://digital.nhs.uk/data-and-information/publications/statistical/national-pulmonary-hypertension-audit/2019# (22.07.2022).
  31. Leber L, Beaudet A, Muller A. Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: identification of the most accurate estimates from a systematic literature review. Pulm Circ. 2021; 11(1): 2045894020977300.
  32. Lau EMT, Giannoulatou E, Celermajer DS, et al. Epidemiology and treatment of pulmonary arterial hypertension. Nat Rev Cardiol. 2017; 14(10): 603–614.
  33. Montani D, Girerd B, Jaïs X, et al. Absence of influence of gender and BMPR2 mutation type on clinical phenotypes of pulmonary arterial hypertension. Eur Respir J. 2021; 58(1): 2004229.
  34. Certain MC, Chaumais MC, Jaïs X, et al. Characteristics and long-term outcomes of pulmonary venoocclusive disease induced by mitomycin C. Chest. 2021; 159(3): 1197–1207.
  35. Cornet L, Khouri C, Roustit M, et al. Pulmonary arterial hypertension associated with protein kinase inhibitors: a pharmacovigilance-pharmacodynamic study. Eur Respir J. 2019; 53(5): 1802472.
  36. McGee M, Whitehead N, Martin J, et al. Drug-associated pulmonary arterial hypertension. Clin Toxicol (Phila). 2018; 56(9): 801–809.
  37. McGregor PC, Boosalis V, Aragam J. Carfilzomib-induced pulmonary hypertension with associated right ventricular dysfunction: A case report. SAGE Open Med Case Rep. 2021; 9: 2050313X21994031.
  38. Montani D, Lau EM, Descatha A, et al. Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease. Eur Respir J. 2015; 46(6): 1721–1731.
  39. Savale L, Chaumais MC, Cottin V, et al. Pulmonary hypertension associated with benfluorex exposure. Eur Respir J. 2012; 40(5): 1164–1172.
  40. Weatherald J, Bondeelle L, Chaumais MC, et al. Pulmonary complications of Bcr-Abl tyrosine kinase inhibitors. Eur Respir J. 2020; 56(4): 2000279.
  41. Philen RM, Posada M. Toxic oil syndrome and eosinophilia-myalgia syndrome: May 8-10, 1991, World Health Organization meeting report. Semin Arthritis Rheum. 1993; 23(2): 104–124.
  42. Hertzman PA, Clauw DJ, Kaufman LD, et al. The eosinophilia-myalgia syndrome: status of 205 patients and results of treatment 2 years after onset. Ann Intern Med. 1995; 122(11): 851–855.
  43. Walker AM, Langleben D, Korelitz JJ, et al. Temporal trends and drug exposures in pulmonary hypertension: an American experience. Am Heart J. 2006; 152(3): 521–526.
  44. Chen SC, Dastamani A, Pintus D, et al. Diazoxide-induced pulmonary hypertension in hyperinsulinaemic hypoglycaemia: Recommendations from a multicentre study in the United Kingdom. Clin Endocrinol (Oxf). 2019; 91(6): 770–775.
  45. Timlin MR, Black AB, Delaney HM, et al. Development of pulmonary hypertension during treatment with diazoxide: a case series and literature review. Pediatr Cardiol. 2017; 38(6): 1247–1250.
  46. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 386(9995): 743–800.
  47. Rosenkranz S, Gibbs JS, Wachter R, et al. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016; 37(12): 942–954.
  48. Lam CSP, Roger VL, Rodeheffer RJ, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009; 53(13): 1119–1126.
  49. Tichelbäcker T, Dumitrescu D, Gerhardt F, et al. Pulmonary hypertension and valvular heart disease. Herz. 2019; 44(6): 491–501.
  50. Weber L, Rickli H, Haager PK, et al. Haemodynamic mechanisms and long-term prognostic impact of pulmonary hypertension in patients with severe aortic stenosis undergoing valve replacement. Eur J Heart Fail. 2019; 21(2): 172–181.
  51. Hurdman J, Condliffe R, Elliot CA, et al. Pulmonary hypertension in COPD: results from the ASPIRE registry. Eur Respir J. 2013; 41(6): 1292–1301.
  52. Nathan SD, Barbera JA, Gaine SP, et al. Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J. 2019; 53(1): 1801914.
  53. Naeije R. Pulmonary hypertension at high altitude. Eur Respir J. 2019; 53(6): 1900985.
  54. Delcroix M, Torbicki A, Gopalan D, et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur Respir J. 2021; 57(6): 2002828.
  55. Kramm T, Wilkens H, Fuge J, et al. Incidence and characteristics of chronic thromboembolic pulmonary hypertension in Germany. Clin Res Cardiol. 2018; 107(7): 548–553.
  56. Swietlik EM, Ruggiero A, Fletcher AJ, et al. Limitations of resting haemodynamics in chronic thromboembolic disease without pulmonary hypertension. Eur Respir J. 2019; 53(1): 1801787.
  57. Kalantari S, Gomberg-Maitland M. Group 5 pulmonary hypertension: the orphan's orphan disease. Cardiol Clin. 2016; 34(3): 443–449.
  58. Shlobin OA, Kouranos V, Barnett SD, et al. Physiological predictors of survival in patients with sarcoidosis-associated pulmonary hypertension: results from an international registry. Eur Respir J. 2020; 55(5): 1901747.
  59. Boucly A, Cottin V, Nunes H, et al. Management and long-term outcomes of sarcoidosis-associated pulmonary hypertension. Eur Respir J. 2017; 50(4): 1700465.
  60. Rich S, Dantzker DR, Ayres SM, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987; 107(2): 216–223.
  61. Jing ZC, Xu XQ, Han ZY, et al. Registry and survival study in chinese patients with idiopathic and familial pulmonary arterial hypertension. Chest. 2007; 132(2): 373–379.
  62. Galiè N, Saia F, Palazzini M, et al. Left main coronary artery compression in patients with pulmonary arterial hypertension and Angina. J Am Coll Cardiol. 2017; 69(23): 2808–2817.
  63. Kovacs G, Avian A, Foris V, et al. Use of ECG and other simple non-invasive tools to assess pulmonary hypertension. PLoS One. 2016; 11(12): e0168706.
  64. Bonderman D, Wexberg P, Martischnig AM, et al. A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J. 2011; 37(5): 1096–1103.
  65. Klok FA, Surie S, Kempf T, et al. A simple non-invasive diagnostic algorithm for ruling out chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Thromb Res. 2011; 128(1): 21–26.
  66. Henkens IR, Mouchaers KTB, Vonk-Noordegraaf A, et al. Improved ECG detection of presence and severity of right ventricular pressure load validated with cardiac magnetic resonance imaging. Am J Physiol Heart Circ Physiol. 2008; 294(5): H2150–H2157.
  67. Rich JD, Thenappan T, Freed B, et al. QTc prolongation is associated with impaired right ventricular function and predicts mortality in pulmonary hypertension. Int J Cardiol. 2013; 167(3): 669–676.
  68. Remy-Jardin M, Ryerson CJ, Schiebler ML, et al. Imaging of pulmonary hypertension in adults: a position paper from the fleischner society. Eur Respir J. 2021; 57(1): 2004455.
  69. Ascha M, Renapurkar RD, Tonelli AR. A review of imaging modalities in pulmonary hypertension. Ann Thorac Med. 2017; 12(2): 61–73.
  70. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013; 62(25 Suppl): D42–D50.
  71. Sun XG, Hansen J, Oudiz R, et al. Pulmonary function in primary pulmonary hypertension. J Am Coll Cardiol. 2003; 41(6): 1028–1035.
  72. Meyer FJ, Ewert R, Hoeper MM, et al. German PPH Study Group. Peripheral airway obstruction in primary pulmonary hypertension. Thorax. 2002; 57(6): 473–476.
  73. Alonso-Gonzalez R, Borgia F, Diller GP, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 2013; 127(8): 882–890.
  74. Hoeper M, Dwivedi K, Pausch C, et al. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. Lancet Respir Med. 2022; 10(10): 937–948.
  75. Hoeper MM, Meyer K, Rademacher J, et al. Diffusion capacity and mortality in patients with pulmonary hypertension due to heart failure with preserved ejection fraction. JACC Heart Fail. 2016; 4(6): 441–449.
  76. Olson TP, Johnson BD, Borlaug BA. Impaired pulmonary diffusion in heart failure with preserved ejection fraction. JACC Heart Fail. 2016; 4(6): 490–498.
  77. Olsson KM, Fuge J, Meyer K, et al. More on idiopathic pulmonary arterial hypertension with a low diffusing capacity. Eur Respir J. 2017; 50(2): 1700354.
  78. Trip P, Nossent EJ, de Man FS, et al. Severely reduced diffusion capacity in idiopathic pulmonary arterial hypertension: patient characteristics and treatment responses. Eur Respir J. 2013; 42(6): 1575–1585.
  79. Mélot C, Naeije R. Pulmonary vascular diseases. Compr Physiol. 2011; 1(2): 593–619.
  80. Harbaum L, Fuge J, Kamp JC, et al. Blood carbon dioxide tension and risk in pulmonary arterial hypertension. Int J Cardiol. 2020; 318: 131–137.
  81. Jilwan FN, Escourrou P, Garcia G, et al. High occurrence of hypoxemic sleep respiratory disorders in precapillary pulmonary hypertension and mechanisms. Chest. 2013; 143(1): 47–55.
  82. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010; 23(7): 685–713; quiz 786-788.
  83. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015; 28(1): 1–39.e14.
  84. Galderisi M, Cosyns B, Edvardsen T, et al. 2016–2018 EACVI Scientific Documents Committee. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017; 18(12): 1301–1310.
  85. Farber HW, Foreman AJ, Miller DP, et al. REVEAL Registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail. 2011; 17(2): 56–64.
  86. Arcasoy SM, Christie JD, Ferrari VA, et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med. 2003; 167(5): 735–740.
  87. Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009; 179(7): 615–621.
  88. D'Alto M, Di Maio M, Romeo E, et al. Echocardiographic probability of pulmonary hypertension: a validation study. Eur Respir J. 2022; 60(2): 2102548.
  89. Jankowich M, Maron BA, Choudhary G. Mildly elevated pulmonary artery systolic pressure on echocardiography: bridging the gap in current guidelines. Lancet Respir Med. 2021; 9(10): 1185–1191.
  90. Huston JH, Maron BA, French J, et al. Association of mild echocardiographic pulmonary hypertension with mortality and right ventricular function. JAMA Cardiol. 2019; 4(11): 1112–1121.
  91. Gall H, Yogeswaran A, Fuge J, et al. Validity of echocardiographic tricuspid regurgitation gradient to screen for new definition of pulmonary hypertension. EClinicalMedicine. 2021; 34: 100822.
  92. D'Alto M, Romeo E, Argiento P, et al. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol. 2013; 168(4): 4058–4062.
  93. Fonseca GHH, Souza R, Salemi VMC, et al. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. Eur Respir J. 2012; 39(1): 112–118.
  94. Parent F, Bachir D, Inamo J, et al. A hemodynamic study of pulmonary hypertension in sickle cell disease. N Engl J Med. 2011; 365(1): 44–53.
  95. Grünig E, Henn P, D'Andrea A, et al. Reference values for and determinants of right atrial area in healthy adults by 2-dimensional echocardiography. Circ Cardiovasc Imaging. 2013; 6(1): 117–124.
  96. Tello K, Wan J, Dalmer A, et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging. 2019; 12(9): e009047.
  97. Tello K, Axmann J, Ghofrani HA, et al. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int J Cardiol. 2018; 266: 229–235.
  98. Guazzi M, Dixon D, Labate V, et al. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging. 2017; 10(10 Pt B): 1211–1221.
  99. Arkles JS, Opotowsky AR, Ojeda J, et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011; 183(2): 268–276.
  100. Takahama H, McCully RB, Frantz RP, et al. Unraveling the RV ejection Doppler envelope: insight into pulmonary artery hemodynamics and disease severity. JACC Cardiovasc Imaging. 2017; 10(10 Pt B): 1268–1277.
  101. Baumgartner H, De Backer J, Baumgartner H, et al. ESC Scientific Document Group. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J. 2021; 42(6): 563–645.
  102. Kim NH, Delcroix M, Jais X, et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019; 53(1): 1801915.
  103. Konstantinides S, Meyer G, Becattini C, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020; 41(4): 543–603.
  104. He J, Fang W, Lv B, et al. Diagnosis of chronic thromboembolic pulmonary hypertension: comparison of ventilation/perfusion scanning and multidetector computed tomography pulmonary angiography with pulmonary angiography. Nucl Med Commun. 2012; 33(5): 459–463.
  105. Tunariu N, Gibbs SJR, Win Z, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J Nucl Med. 2007; 48(5): 680–684.
  106. Giordano J, Khung S, Duhamel A, et al. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): Dual-energy CT experience in 31 patients. Eur Radiol. 2017; 27(4): 1631–1639.
  107. Seferian A, Helal B, Jaïs X, et al. Ventilation/perfusion lung scan in pulmonary veno-occlusive disease. Eur Respir J. 2012; 40(1): 75–83.
  108. Swift AJ, Dwivedi K, Johns C, et al. Diagnostic accuracy of CT pulmonary angiography in suspected pulmonary hypertension. Eur Radiol. 2020; 30(9): 4918–4929.
  109. Dong C, Zhou M, Liu D, et al. Diagnostic accuracy of computed tomography for chronic thromboembolic pulmonary hypertension: a systematic review and meta-analysis. PLoS One. 2015; 10(4): e0126985.
  110. Rajaram S, Swift AJ, Capener D, et al. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension. Eur Radiol. 2012; 22(2): 310–317.
  111. Ende-Verhaar YM, Meijboom LJ, Kroft LJM, et al. Usefulness of standard computed tomography pulmonary angiography performed for acute pulmonary embolism for identification of chronic thromboembolic pulmonary hypertension: results of the InShape III study. J Heart Lung Transplant. 2019; 38(7): 731–738.
  112. Guérin L, Couturaud F, Parent F, et al. Prevalence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Prevalence of CTEPH after pulmonary embolism. Thromb Haemost. 2014; 112(3): 598–605.
  113. Tamura M, Yamada Y, Kawakami T, et al. Diagnostic accuracy of lung subtraction iodine mapping CT for the evaluation of pulmonary perfusion in patients with chronic thromboembolic pulmonary hypertension: Correlation with perfusion SPECT/CT. Int J Cardiol. 2017; 243: 538–543.
  114. Masy M, Giordano J, Petyt G, et al. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol. 2018; 28(12): 5100–5110.
  115. Hinrichs JB, Marquardt S, von Falck C, et al. Comparison of C-arm computed tomography and digital subtraction angiography in patients with chronic thromboembolic pulmonary hypertension. Cardiovasc Intervent Radiol. 2016; 39(1): 53–63.
  116. Hinrichs JB, Renne J, Hoeper MM, et al. Balloon pulmonary angioplasty: applicability of C-Arm CT for procedure guidance. Eur Radiol. 2016; 26(11): 4064–4071.
  117. Swift AJ, Lu H, Uthoff J, et al. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. Eur Heart J Cardiovasc Imaging. 2021; 22(2): 236–245.
  118. Connors JM. Thrombophilia Testing and Venous Thrombosis. N Engl J Med. 2017; 377(12): 1177–1187.
  119. Rosenkranz S, Howard LS, Gomberg-Maitland M, et al. Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation. 2020; 141(8): 678–693.
  120. Sun XG, Hansen JE, Oudiz RJ, et al. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001; 104(4): 429–435.
  121. Boerrigter BG, Bogaard HJ, Trip P, et al. Ventilatory and cardiocirculatory exercise profiles in COPD: the role of pulmonary hypertension. Chest. 2012; 142(5): 1166–1174.
  122. Caravita S, Faini A, Deboeck G, et al. Pulmonary hypertension and ventilation during exercise: role of the pre-capillary component. J Heart Lung Transplant. 2017; 36(7): 754–762.
  123. Dumitrescu D, Nagel C, Kovacs G, et al. Cardiopulmonary exercise testing for detecting pulmonary arterial hypertension in systemic sclerosis. Heart. 2017; 103(10): 774–782.
  124. Mehra MR, Canter CE, Hannan MM, et al. International Society for Heart Lung Transplantation (ISHLT) Infectious Diseases, Pediatric and Heart Failure and Transplantation Councils. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016; 35(1): 1–23.
  125. Hoeper MM, Lee SH, Voswinckel R, et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol. 2006; 48(12): 2546–2552.
  126. Kovacs G, Avian A, Olschewski A, et al. Zero reference level for right heart catheterisation. Eur Respir J. 2013; 42(6): 1586–1594.
  127. Opotowsky AR, Hess E, Maron BA, et al. Thermodilution vs estimated Fick cardiac output measurement in clinical practice: an analysis of mortality from the Veterans Affairs Clinical Assessment, Reporting, and Tracking (VA CART) Program and Vanderbilt University. JAMA Cardiol. 2017; 2(10): 1090–1099.
  128. Viray MC, Bonno EL, Houston BA, et al. Role of pulmonary artery wedge pressure saturation during right heart catheterization: a prospective study. Circ Heart Fail. 2020; 13(11): e007981.
  129. Sitbon O, Humbert M, Jaïs X, et al. Long-Term Response to Calcium Channel Blockers in Idiopathic Pulmonary Arterial Hypertension. Circulation. 2005; 111(23): 3105–3111.
  130. Hoeper MM, Olschewski H, Ghofrani HA, et al. A comparison of the acute hemodynamic effects of inhaled nitric oxide and aerosolized iloprost in primary pulmonary hypertension. German PPH study group. J Am Coll Cardiol. 2000; 35(1): 176–182.
  131. Opitz C, Wensel R, Bettmann M, et al. Assessment of the vasodilator response in primary pulmonary hypertension. Comparing prostacyclin and iloprost administered by either infusion or inhalation. Eur Heart J. 2003; 24(4): 356–365.
  132. Jing ZC, Jiang X, Han ZY, et al. Iloprost for pulmonary vasodilator testing in idiopathic pulmonary arterial hypertension. Eur Respir J. 2009; 33(6): 1354–1360.
  133. Kovacs G, Herve P, Barbera JA, et al. An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur Respir J. 2017; 50(5): 1700578.
  134. Claeys M, Claessen G, La Gerche A, et al. Impaired cardiac reserve and abnormal vascular load limit exercise capacity in chronic thromboembolic disease. JACC Cardiovasc Imaging. 2019; 12(8 Pt 1): 1444–1456.
  135. Guth S, Wiedenroth CB, Rieth A, et al. Exercise right heart catheterisation before and after pulmonary endarterectomy in patients with chronic thromboembolic disease. Eur Respir J. 2018; 52(3): 1800458.
  136. Godinas L, Lau EM, Chemla D, et al. Diagnostic concordance of different criteria for exercise pulmonary hypertension in subjects with normal resting pulmonary artery pressure. Eur Respir J. 2016; 48(1): 254–257.
  137. Naeije R, Vanderpool R, Dhakal BP, et al. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med. 2013; 187(6): 576–583.
  138. Nishimura RA, Otto CM, Bonow RO, et al. American College of Cardiology, American College of Cardiology/American Heart Association, American Heart Association. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014; 148(1): e1–e132.
  139. Esfandiari S, Wright SP, Goodman JM, et al. Pulmonary artery wedge pressure relative to exercise work rate in older men and women. Med Sci Sports Exerc. 2017; 49(7): 1297–1304.
  140. Boerrigter BG, Waxman AB, Westerhof N, et al. Measuring central pulmonary pressures during exercise in COPD: how to cope with respiratory effects. Eur Respir J. 2014; 43(5): 1316–1325.
  141. Andersen MJ, Wolsk E, Bakkestrøm R, et al. Hemodynamic response to rapid saline infusion compared with exercise in healthy participants aged 20-80 years. J Card Fail. 2019; 25(11): 902–910.
  142. Vachiéry JL, Tedford RJ, Rosenkranz S, et al. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019; 53(1): 1801897.
  143. D'Alto M, Romeo E, Argiento P, et al. Clinical relevance of fluid challenge in patients evaluated for Pulmonary hypertension. Chest. 2017; 151(1): 119–126.
  144. van de Bovenkamp AA, Wijkstra N, Oosterveer FPT, et al. The value of passive leg raise during right heart catheterization in diagnosing heart failure with preserved ejection fraction. Circ Heart Fail. 2022; 15(4): e008935.
  145. D'Alto M, Dimopoulos K, Coghlan JG, et al. Right heart catheterization for the diagnosis of pulmonary hypertension: controversies and practical issues. Heart Fail Clin. 2018; 14(3): 467–477.
  146. Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992; 327(2): 76–81.
  147. Barst RJ, McGoon M, Torbicki A, et al. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2004; 43(12 Suppl S): 40S–47S.
  148. Morrell N, Aldred M, Chung W, et al. Genetics and genomics of pulmonary arterial hypertension. Eur Respir J. 2019; 53(1): 1801899.
  149. Gräf S, Haimel M, Bleda M, et al. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun. 2018; 9(1): 1416.
  150. Zhu Na, Swietlik E, Welch C, et al. Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Med. 2021; 13(1): 80.
  151. Song J, Eichstaedt CA, Viales RR, et al. Identification of genetic defects in pulmonary arterial hypertension by a new gene panel diagnostic tool. Clin Sci (Lond). 2016; 130(22): 2043–2052.
  152. Lane KB, Machado RD, Pauciulo MW, et al. International PPH Consortium. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet. 2000; 26(1): 81–84.
  153. Bohnen MS, Ma L, Zhu Na, et al. Loss-of-function ABCC8 mutations in pulmonary arterial hypertension. Circ Genom Precis Med. 2018; 11(10): e002087.
  154. Ma L, Roman-Campos D, Austin ED, et al. A novel channelopathy in pulmonary arterial hypertension. N Engl J Med. 2013; 369(4): 351–361.
  155. Nasim MdT, Ogo T, Ahmed M, et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat. 2011; 32(12): 1385–1389.
  156. Garg A, Kircher M, Del Campo M, et al. University of Washington Center for Mendelian Genomics. Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome. Am J Med Genet A. 2015; 167A(8): 1796–1806.
  157. Kerstjens-Frederikse WS, Bongers EM, Roofthooft MTR, et al. TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet. 2013; 50(8): 500–506.
  158. Eyries M, Montani D, Girerd B, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014; 46(1): 65–69.
  159. Swietlik EM, Greene D, Zhu Na, et al. Bayesian inference associates rare KDR variants with specific phenotypes in pulmonary arterial hypertension. Circ Genom Precis Med. 2020 [Epub ahead of print]; 14(1): e003155.
  160. Chida A, Shintani M, Yagi H, et al. Outcomes of childhood pulmonary arterial hypertension in BMPR2 and ALK1 mutation carriers. Am J Cardiol. 2012; 110(4): 586–593.
  161. Hoeper MM, Pausch C, Grünig E, et al. Idiopathic pulmonary arterial hypertension phenotypes determined by cluster analysis from the COMPERA registry. J Heart Lung Transplant. 2020; 39(12): 1435–1444.
  162. Badagliacca R, Poscia R, Pezzuto B, et al. Pulmonary arterial dilatation in pulmonary hypertension: prevalence and prognostic relevance. Cardiology. 2012; 121(2): 76–82.
  163. Santaniello A, Casella R, Vicenzi M, et al. Cardiopulmonary exercise testing in a combined screening approach to individuate pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford). 2020; 59(7): 1581–1586.
  164. Albrecht T, Blomley MJ, Cosgrove DO, et al. Non-invasive diagnosis of hepatic cirrhosis by transit-time analysis of an ultrasound contrast agent. Lancet. 1999; 353(9164): 1579–1583.
  165. Cottin V, Le Pavec J, Prévot G, et al. GERM. Pulmonary hypertension in patients with combined pulmonary fibrosis and emphysema syndrome. Eur Respir J. 2010; 35(1): 105–111.
  166. Coghlan JG, Galiè N, Barberà JA, et al. AMBITION investigators. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015; 373(9): 834–844.
  167. Pulido T, Adzerikho I, Channick RN, et al. SERAPHIN Investigators. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013; 369(9): 809–818.
  168. Sitbon O, Bosch J, Cottreel E, et al. Macitentan for the treatment of portopulmonary hypertension (PORTICO): a multicentre, randomised, double-blind, placebo-controlled, phase 4 trial. Lancet Respir Med. 2019; 7(7): 594–604.
  169. Armstrong I, Billings C, Kiely DG, et al. The patient experience of pulmonary hypertension: a large cross-sectional study of UK patients. BMC Pulm Med. 2019; 19(1): 67.
  170. Strange G, Gabbay E, Kermeen F, et al. Time from symptoms to definitive diagnosis of idiopathic pulmonary arterial hypertension: The delay study. Pulm Circ. 2013; 3(1): 89–94.
  171. Ivarsson B, Johansson A, Kjellström B. The odyssey from symptom to diagnosis of pulmonary hypertension from the patients and spouses perspective. J Prim Care Community Health. 2021; 12: 21501327211029241.
  172. Kiely DG, Lawrie A, Humbert M. Screening strategies for pulmonary arterial hypertension. Eur Heart J Suppl. 2019; 21(Suppl K): K9–K20.
  173. Coghlan JG, Denton CP, Grünig E, et al. DETECT study group. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis. 2014; 73(7): 1340–1349.
  174. Weatherald J, Montani D, Jevnikar M, et al. Screening for pulmonary arterial hypertension in systemic sclerosis. Eur Respir Rev. 2019; 28(153): 190023.
  175. Krowka MJ, Fallon MB, Kawut SM, et al. International Liver Transplant Society Practice Guidelines: diagnosis and management of hepatopulmonary syndrome and portopulmonary hypertension. Transplantation. 2016; 100(7): 1440–1452.
  176. Mancuso L, Scordato F, Pieri M, et al. Management of portopulmonary hypertension: new perspectives. World J Gastroenterol. 2013; 19(45): 8252–8257.
  177. Sitbon O, Lascoux-Combe C, Delfraissy JF, et al. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med. 2008; 177(1): 108–113.
  178. Ende-Verhaar YM, Cannegieter SC, Vonk Noordegraaf A, et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary view of the published literature. Eur Respir J. 2017; 49(2): 1601792.
  179. Ende-Verhaar YM, Huisman MV, Klok FA. To screen or not to screen for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb Res. 2017; 151: 1–7.
  180. Kiely DG, Doyle O, Drage E, et al. Utilising artificial intelligence to determine patients at risk of a rare disease: idiopathic pulmonary arterial hypertension. Pulm Circ. 2019; 9(4): 2045894019890549.
  181. Nathan S, Behr J, Collard H, et al. Riociguat for idiopathic interstitial pneumonia-associated pulmonary hypertension (RISE-IIP): a randomised, placebo-controlled phase 2b study. Lancet Respir Med. 2019; 7(9): 780–790.
  182. Nagel C, Henn P, Ehlken N, et al. Stress Doppler echocardiography for early detection of systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Res Ther. 2015; 17(1): 165.
  183. Semalulu T, Rudski L, Huynh T, et al. Canadian Scleroderma Research Group. An evidence-based strategy to screen for pulmonary arterial hypertension in systemic sclerosis. Semin Arthritis Rheum. 2020; 50(6): 1421–1427.
  184. Vandecasteele E, Drieghe B, Melsens K, et al. Screening for pulmonary arterial hypertension in an unselected prospective systemic sclerosis cohort. Eur Respir J. 2017; 49(5): 1602275.
  185. Coghlan JG, Wolf M, Distler O, et al. Incidence of pulmonary hypertension and determining factors in patients with systemic sclerosis. Eur Respir J. 2018; 51(4): 1701197.
  186. Hachulla E, Gressin V, Guillevin L, et al. Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum. 2005; 52(12): 3792–3800.
  187. Humbert M, Yaici A, de Groote P, et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: clinical characteristics at diagnosis and long-term survival. Arthritis Rheum. 2011; 63(11): 3522–3530.
  188. Thakkar V, Stevens W, Prior D, et al. The inclusion of N-terminal pro-brain natriuretic peptide in a sensitive screening strategy for systemic sclerosis-related pulmonary arterial hypertension: a cohort study. Arthritis Res Ther. 2013; 15(6): R193.
  189. Hao Y, Thakkar V, Stevens W, et al. A comparison of the predictive accuracy of three screening models for pulmonary arterial hypertension in systemic sclerosis. Arthritis Res Ther. 2015; 17(1): 7.
  190. Morrisroe K, Stevens W, Sahhar J, et al. Australian Scleroderma Interest Group (ASIG). Epidemiology and disease characteristics of systemic sclerosis-related pulmonary arterial hypertension: results from a real-life screening programme. Arthritis Res Ther. 2017; 19(1): 42.
  191. Morrisroe K, Huq M, Stevens W, et al. Australian Scleroderma Interest Group (ASIG). Risk factors for development of pulmonary arterial hypertension in Australian systemic sclerosis patients: results from a large multicenter cohort study. BMC Pulm Med. 2016; 16(1): 134.
  192. Smith V, Vanhaecke A, Vandecasteele E, et al. Nailfold videocapillaroscopy in systemic sclerosis-related pulmonary arterial hypertension: a systematic literature review. J Rheumatol. 2020; 47(6): 888–895.
  193. Larkin EK, Newman JH, Austin ED, et al. Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012; 186(9): 892–896.
  194. Colle IO, Moreau R, Godinho E, et al. Diagnosis of portopulmonary hypertension in candidates for liver transplantation: a prospective study. Hepatology. 2003; 37(2): 401–409.
  195. Kim WR, Krowka MJ, Plevak DJ, et al. Accuracy of Doppler echocardiography in the assessment of pulmonary hypertension in liver transplant candidates. Liver Transpl. 2000; 6(4): 453–458.
  196. Raevens S, Colle I, Reyntjens K, et al. Echocardiography for the detection of portopulmonary hypertension in liver transplant candidates: an analysis of cutoff values. Liver Transpl. 2013; 19(6): 602–610.
  197. Golpe R, Pérez-de-Llano L, Castro-Añón O, et al. Right ventricle dysfunction and pulmonary hypertension in hemodynamically stable pulmonary embolism. Respir Med. 2010; 104(9): 1370–1376.
  198. Pengo V, Lensing AWA, Prins MH, et al. Thromboembolic Pulmonary Hypertension Study Group. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004; 350(22): 2257–2264.
  199. Simonneau G, Hoeper MM. Evaluation of the incidence of rare diseases: difficulties and uncertainties, the example of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2017; 49(2): 1602522.
  200. Coquoz N, Weilenmann D, Stolz D, et al. Multicentre observational screening survey for the detection of CTEPH following pulmonary embolism. Eur Respir J. 2018; 51(4): 1702505.
  201. Valerio L, Mavromanoli AC, Barco S, et al. FOCUS Investigators. Chronic thromboembolic pulmonary hypertension and impairment after pulmonary embolism: the FOCUS study. Eur Heart J. 2022; 43(36): 3387–3398.
  202. Nijkeuter M, Hovens MMC, Davidson BL, et al. Resolution of thromboemboli in patients with acute pulmonary embolism: a systematic review. Chest. 2006; 129(1): 192–197.
  203. Sanchez O, Helley D, Couchon S, et al. Perfusion defects after pulmonary embolism: risk factors and clinical significance. J Thromb Haemost. 2010; 8(6): 1248–1255.
  204. Wartski M, Collignon MA. Incomplete recovery of lung perfusion after 3 months in patients with acute pulmonary embolism treated with antithrombotic agents. THESEE Study Group. Tinzaparin ou heparin standard: evaluation dans l’Embolie Pulmonaire study. J Nucl Med. 2000; 41(6): 1043–1048.
  205. Nilsson LT, Andersson T, Larsen F, et al. Dyspnea after pulmonary embolism: a nation-wide population-based case-control study. Pulm Circ. 2021; 11(4): 20458940211046831.
  206. Boon GJ, Ende-Verhaar YM, Bavalia R, et al. InShape II study group. Non-invasive early exclusion of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: the InShape II study. Thorax. 2021; 76(10): 1002–1009.
  207. Helmersen D, Provencher S, Hirsch A, et al. Can J Respir Crit Care Sleep Med. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine. 2019; 3(4): 177–198.
  208. Delcroix M, Kerr K, Fedullo P. Chronic thromboembolic pulmonary hypertension. Epidemiology and risk factors. Ann Am Thorac Soc. 2016; 13 Suppl 3: S201–S206.
  209. Klok FA, Tesche C, Rappold L, et al. External validation of a simple non-invasive algorithm to rule out chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb Res. 2015; 135(5): 796–801.
  210. Barst RJ, Chung L, Zamanian RT, et al. Functional class improvement and 3-year survival outcomes in patients with pulmonary arterial hypertension in the REVEAL Registry. Chest. 2013; 144(1): 160–168.
  211. Nickel N, Golpon H, Greer M, et al. The prognostic impact of follow-up assessments in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2012; 39(3): 589–596.
  212. Sitbon O, Humbert M, Nunes H, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension. J Am Coll Cardiol. 2002; 40(4): 780–788.
  213. Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010; 122(2): 164–172.
  214. Humbert M, Sitbon O, Yaici A, et al. French Pulmonary Arterial Hypertension Network. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. European Respiratory Journal. 2010; 36(3): 549–555.
  215. McLaughlin VV, Sitbon O, Badesch DB, et al. Survival with first-line bosentan in patients with primary pulmonary hypertension. Eur Respir J. 2005; 25(2): 244–249.
  216. Nickel N, Golpon H, Greer M, et al. The prognostic impact of follow-up assessments in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2012; 39(3): 589–596.
  217. Amsallem M, Sweatt AJ, Aymami MC, et al. Right heart end-systolic remodeling index strongly predicts outcomes in pulmonary arterial hypertension: comparison with validated models. Circ Cardiovasc Imaging. 2017; 10(6): e005771.
  218. Raymond R, Hinderliter A, Willis P, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002; 39(7): 1214–1219.
  219. Badagliacca R, Papa S, Valli G, et al. Echocardiography combined with cardiopulmonary exercise testing for the prediction of outcome in idiopathic pulmonary arterial hypertension. Chest. 2016; 150(6): 1313–1322.
  220. Badagliacca R, Papa S, Manzi G, et al. Usefulness of adding echocardiography of the right heart to risk-assessment scores in prostanoid-treated pulmonary arterial hypertension. JACC Cardiovasc Imaging. 2020; 13(9): 2054–2056.
  221. Ernande L, Cottin V, Leroux PY, et al. Right isovolumic contraction velocity predicts survival in pulmonary hypertension. J Am Soc Echocardiogr. 2013; 26(3): 297–306.
  222. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006; 174(9): 1034–1041.
  223. Ghio S, Mercurio V, Fortuni F, et al. TAPSE in PAH investigators. A comprehensive echocardiographic method for risk stratification in pulmonary arterial hypertension. Eur Respir J. 2020; 56(3): 2000513.
  224. Sachdev A, Villarraga H, Frantz R, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011; 139(6): 1299–1309.
  225. Vonk Noordegraaf A, Chin KM, Haddad F, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019; 53(1): 1801900.
  226. Batal O, Dardari Z, Costabile C, et al. Prognostic value of pericardial effusion on serial echocardiograms in pulmonary arterial hypertension. Echocardiography. 2015; 32(10): 1471–1476.
  227. Chen L, Larsen CM, Le RJ, et al. The prognostic significance of tricuspid valve regurgitation in pulmonary arterial hypertension. Clin Respir J. 2018; 12(4): 1572–1580.
  228. Fenstad ER, Le RJ, Sinak LJ, et al. Pericardial effusions in pulmonary arterial hypertension: characteristics, prognosis, and role of drainage. Chest. 2013; 144(5): 1530–1538.
  229. Badagliacca R, Poscia R, Pezzuto B, et al. Prognostic relevance of right heart reverse remodeling in idiopathic pulmonary arterial hypertension. The Journal of Heart and Lung Transplantation. 2018; 37(2): 195–205.
  230. Badano LP, Addetia K, Pontone G, et al. Advanced imaging of right ventricular anatomy and function. Heart. 2020; 106(19): 1469–1476.
  231. Lewis RA, Johns CS, Cogliano M, et al. Identification of cardiac magnetic resonance imaging thresholds for risk stratification in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2020; 201(4): 458–468.
  232. Swift A, Capener D, Johns C, et al. Magnetic resonance imaging in the prognostic evaluation of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2017; 196(2): 228–239.
  233. van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011; 58(24): 2511–2519.
  234. van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007; 28(10): 1250–1257.
  235. Alabed S, Shahin Y, Garg P, et al. Cardiac-MRI predicts clinical worsening and mortality in pulmonary arterial hypertension: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2021; 14(5): 931–942.
  236. Swift AJ, Wilson F, Cogliano M, et al. Repeatability and sensitivity to change of non-invasive end points in PAH: the RESPIRE study. Thorax. 2021; 76(10): 1032–1035.
  237. van der Bruggen CE, Handoko ML, Bogaard HJ, et al. The value of hemodynamic measurements or cardiac MRI in the follow-up of patients with idiopathic pulmonary arterial hypertension. Chest. 2021; 159(4): 1575–1585.
  238. Weatherald J, Boucly A, Chemla D, et al. Prognostic value of follow-up hemodynamic variables after initial management in pulmonary arterial hypertension. Circulation. 2018; 137(7): 693–704.
  239. van Wolferen SA, van de Veerdonk MC, Mauritz GJ, et al. Clinically significant change in stroke volume in pulmonary hypertension. Chest. 2011; 139(5): 1003–1009.
  240. Veld AH, Veerdonk MV, Spruijt O, et al. Preserving right ventricular function in patients with pulmonary arterial hypertension: Single centre experience with a cardiac magnetic resonance imaging‐guided treatment strategy. Pulmonary Circulation. 2019; 9(1): 1–7.
  241. van de Veerdonk MC, Huis In T Veld AE, Marcus JT, et al. Upfront combination therapy reduces right ventricular volumes in pulmonary arterial hypertension. Eur Respir J. 2017; 49(6): 1700007.
  242. van de Veerdonk MC, Marcus JT, Westerhof N, et al. Signs of right ventricular deterioration in clinically stable patients with pulmonary arterial hypertension. Chest. 2015; 147(4): 1063–1071.
  243. D'Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991; 115(5): 343–349.
  244. Humbert M, Sitbon O, Chaouat A, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010; 122(2): 156–163.
  245. McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation. 2002; 106(12): 1477–1482.
  246. Provencher S, Chemla D, Hervé P, et al. Heart rate responses during the 6-minute walk test in pulmonary arterial hypertension. Eur Respir J. 2006; 27(1): 114–120.
  247. Sitbon O, Benza RL, Badesch DB, et al. Validation of two predictive models for survival in pulmonary arterial hypertension. Eur Respir J. 2015; 46(1): 152–164.
  248. Thenappan T, Shah SJ, Rich S, et al. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J. 2010; 35(5): 1079–1087.
  249. Benza RL, Gomberg-Maitland M, Elliott CG, et al. Predicting survival in patients with pulmonary arterial hypertension: the REVEAL risk score calculator 2.0 and comparison with esc/ers-based risk assessment strategies. Chest. 2019; 156(2): 323–337.
  250. Benza RL, Gomberg-Maitland M, Miller DP, et al. The REVEAL registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012; 141(2): 354–362.
  251. Savarese G, Paolillo S, Costanzo P, et al. Do changes of 6-minute walk distance predict clinical events in patients with pulmonary arterial hypertension? A meta-analysis of 22 randomized trials. J Am Coll Cardiol. 2012; 60(13): 1192–1201.
  252. Zelniker TA, Huscher D, Vonk-Noordegraaf A, et al. The 6MWT as a prognostic tool in pulmonary arterial hypertension: results from the COMPERA registry. Clin Res Cardiol. 2018; 107(6): 460–470.
  253. Farber HW, Miller DP, McGoon MD, et al. Predicting outcomes in pulmonary arterial hypertension based on the 6-minute walk distance. J Heart Lung Transplant. 2015; 34(3): 362–368.
  254. Heresi GA, Rao Y. Follow-up functional class and 6-minute walk distance identify long-term survival in pulmonary arterial hypertension. Lung. 2020; 198(6): 933–938.
  255. Souza R, Channick RN, Delcroix M, et al. Association between six-minute walk distance and long-term outcomes in patients with pulmonary arterial hypertension: Data from the randomized SERAPHIN trial. PLoS One. 2018; 13(3): e0193226.
  256. Halliday SJ, Wang Li, Yu C, et al. Six-minute walk distance in healthy young adults. Respir Med. 2020; 165: 105933.
  257. Khirfan G, Naal T, Abuhalimeh B, et al. Hypoxemia in patients with idiopathic or heritable pulmonary arterial hypertension. PLoS One. 2018; 13(1): e0191869.
  258. Lewis RA, Billings CG, Hurdman JA, et al. Maximal exercise testing using the incremental shuttle walking test can be used to risk-stratify patients with pulmonary arterial hypertension. Ann Am Thorac Soc. 2021; 18(1): 34–43.
  259. Laveneziana P, Di Paolo M, Palange P. The clinical value of cardiopulmonary exercise testing in the modern era. Eur Respir Rev. 2021; 30(159): 200187.
  260. Wensel R, Opitz CF, Anker SD, et al. Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation. 2002; 106(3): 319–324.
  261. Badagliacca R, Papa S, Poscia R, et al. The added value of cardiopulmonary exercise testing in the follow-up of pulmonary arterial hypertension. J Heart Lung Transplant. 2019; 38(3): 306–314.
  262. Deboeck G, Scoditti C, Huez S, et al. Exercise testing to predict outcome in idiopathic versus associated pulmonary arterial hypertension. Eur Respir J. 2012; 40(6): 1410–1419.
  263. Wensel R, Francis DP, Meyer FJ, et al. Incremental prognostic value of cardiopulmonary exercise testing and resting haemodynamics in pulmonary arterial hypertension. Int J Cardiol. 2013; 167(4): 1193–1198.
  264. Badagliacca R, Rischard F, Giudice FLo, et al. Incremental value of cardiopulmonary exercise testing in intermediate-risk pulmonary arterial hypertension. J Heart Lung Transplant. 2022; 41(6): 780–790.
  265. Bouzina H, Rådegran G. Low plasma stem cell factor combined with high transforming growth factor-α identifies high-risk patients in pulmonary arterial hypertension. ERJ Open Res. 2018; 4(4): 00035–2018.
  266. Chin KM, Rubin LJ, Channick R, et al. Association of n-terminal pro brain natriuretic peptide and long-term outcome in patients with pulmonary arterial hypertension. Circulation. 2019; 139(21): 2440–2450.
  267. Frantz RP, Farber HW, Badesch DB, et al. Baseline and serial brain natriuretic peptide level predicts 5-year overall survival in patients with pulmonary arterial hypertension: data from the REVEAL registry. Chest. 2018; 154(1): 126–135.
  268. Harbaum L, Ghataorhe P, Wharton J, et al. Reduced plasma levels of small HDL particles transporting fibrinolytic proteins in pulmonary arterial hypertension. Thorax. 2019; 74(4): 380–389.
  269. Naal T, Abuhalimeh B, Khirfan G, et al. Serum chloride levels track with survival in patients with pulmonary arterial hypertension. Chest. 2018; 154(3): 541–549.
  270. Nikolic I, Yung LM, Yang P, et al. Bone morphogenetic protein 9 is a mechanistic biomarker of portopulmonary hypertension. Am J Respir Crit Care Med. 2019; 199(7): 891–902.
  271. Rhodes CJ, Wharton J, Ghataorhe P, et al. Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. Lancet Respir Med. 2017; 5(9): 717–726.
  272. Wetzl V, Tiede SL, Faerber L, et al. Plasma MMP2/TIMP4 ratio at follow-up assessment predicts disease progression of idiopathic pulmonary arterial hypertension. Lung. 2017; 195(4): 489–496.
  273. Arvidsson M, Ahmed A, Bouzina H, et al. Matrix metalloproteinase 7 in diagnosis and differentiation of pulmonary arterial hypertension. Pulm Circ. 2019; 9(4): 2045894019895414.
  274. Kylhammar D, Hesselstrand R, Nielsen S, et al. Angiogenic and inflammatory biomarkers for screening and follow-up in patients with pulmonary arterial hypertension. Scand J Rheumatol. 2018; 47(4): 319–324.
  275. Säleby J, Bouzina H, Ahmed S, et al. Plasma receptor tyrosine kinase RET in pulmonary arterial hypertension diagnosis and differentiation. ERJ Open Res. 2019; 5(4): 00037–2019.
  276. van Bon L, Affandi AJ, Broen J, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med. 2014; 370(5): 433–443.
  277. Ferrer E, Dunmore BJ, Hassan D, et al. A potential role for exosomal translationally controlled tumor protein export in vascular remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2018; 59(4): 467–478.
  278. Lavoie JR, Ormiston ML, Perez-Iratxeta C, et al. Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation. 2014; 129(21): 2125–2135.
  279. Warwick G, Thomas PS, Yates DH. Biomarkers in pulmonary hypertension. Eur Respir J. 2008; 32(2): 503–512.
  280. Hoeper M, Pausch C, Olsson K, et al. COMPERA 2.0: a refined 4-strata risk assessment model for pulmonary arterial hypertension. Eur Respir J. 2022; 60(1): 2102311.
  281. Delcroix M, Howard L. Pulmonary arterial hypertension: the burden of disease and impact on quality of life. Eur Respir Rev. 2015; 24(138): 621–629.
  282. Yorke J, Corris P, Gaine S, et al. emPHasis-10: development of a health-related quality of life measure in pulmonary hypertension. Eur Respir J. 2014; 43(4): 1106–1113.
  283. McGoon MD, Ferrari P, Armstrong I, et al. The importance of patient perspectives in pulmonary hypertension. Eur Respir J. 2019; 53(1): 1801919.
  284. Twiss J, McKenna S, Ganderton L, et al. Psychometric performance of the CAMPHOR and SF-36 in pulmonary hypertension. BMC Pulm Med. 2013; 13: 45.
  285. Chen H, De Marco T, Kobashigawa EA, et al. Comparison of cardiac and pulmonary-specific quality-of-life measures in pulmonary arterial hypertension. Eur Respir J. 2011; 38(3): 608–616.
  286. McKenna SP, Doughty N, Meads DM, et al. The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR): a measure of health-related quality of life and quality of life for patients with pulmonary hypertension. Qual Life Res. 2006; 15(1): 103–115.
  287. Lewis RA, Armstrong I, Bergbaum C, et al. EmPHasis-10 health-related quality of life score predicts outcomes in patients with idiopathic and connective tissue disease-associated pulmonary arterial hypertension: results from a UK multicentre study. Eur Respir J. 2021; 57(2): 2000124.
  288. Bonner N, Abetz L, Meunier J, et al. Development and validation of the living with pulmonary hypertension questionnaire in pulmonary arterial hypertension patients. Health Qual Life Outcomes. 2013; 11: 161.
  289. McCollister D, Shaffer S, Badesch DB, et al. IRB information for the 5 clinical sites. Development of the Pulmonary Arterial Hypertension-Symptoms and Impact (PAH-SYMPACT®) questionnaire: a new patient-reported outcome instrument for PAH. Respir Res. 2016; 17(1): 72.
  290. McCabe C, Bennett M, Doughty N, et al. Patient-reported outcomes assessed by the CAMPHOR questionnaire predict clinical deterioration in idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Chest. 2013; 144(2): 522–530.
  291. Min J, Badesch D, Chakinala M, et al. PHAR Investigators. Prediction of health-related quality of life and hospitalization in pulmonary arterial hypertension: the pulmonary hypertension association registry. Am J Respir Crit Care Med. 2021; 203(6): 761–764.
  292. Kylhammar D, Kjellström B, Hjalmarsson C, et al. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. 2018; 39(47): 4175–4181.
  293. Hoeper MM, Kramer T, Pan Z, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J. 2017; 50(2): 1700740.
  294. Hjalmarsson C, Kjellström B, Jansson K, et al. Early risk prediction in idiopathic connective tissue disease-associated pulmonary arterial hypertension: call for a refined assessment. ERJ Open Res. 2021; 7(3): 000854–2020.
  295. Boucly A, Weatherald J, Savale L, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017; 50(2): 1700889.
  296. Benza RL, Kanwar MK, Raina A, et al. Development and validation of an abridged version of the REVEAL 2.0 risk score calculator, REVEAL lite 2, for use in patients with pulmonary arterial hypertension. Chest. 2021; 159(1): 337–346.
  297. Bouzina H, Rådegran G, Butler O, et al. Longitudinal changes in risk status in pulmonary arterial hypertension. ESC Heart Fail. 2021; 8(1): 680–690.
  298. D'Alto M, Badagliacca R, Lo Giudice F, et al. Hemodynamics and risk assessment 2 years after the initiation of upfront ambrisentan‒tadalafil in pulmonary arterial hypertension. J Heart Lung Transplant. 2020; 39(12): 1389–1397.
  299. Hjalmarsson C, Rådegran G, Kylhammar D, et al. SveFPH and SPAHR. Impact of age and comorbidity on risk stratification in idiopathic pulmonary arterial hypertension. Eur Respir J. 2018; 51(5): 1702310.
  300. Humbert M, Farber HW, Ghofrani HA, et al. Risk assessment in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019; 53(6): 1802004.
  301. Kuwana M, Blair C, Takahashi T, et al. Initial combination therapy of ambrisentan and tadalafil in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) in the modified intention-to-treat population of the AMBITION study: post hoc analysis. Ann Rheum Dis. 2020; 79(5): 626–634.
  302. Kylhammar D, Hjalmarsson C, Hesselstrand R, et al. Predicting mortality during long-term follow-up in pulmonary arterial hypertension. ERJ Open Res. 2021; 7(2): 00837–2020.
  303. Sitbon O, Chin KM, Channick RN, et al. Risk assessment in pulmonary arterial hypertension: insights from the GRIPHON study. J Heart Lung Transplant. 2020; 39(4): 300–309.
  304. Rhodes CJ, Wharton J, Swietlik EM, et al. Using the plasma proteome for risk stratifying patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2022; 205(9): 1102–1111.
  305. Benza R, Lohmueller L, Kraisangka J, et al. Risk assessment in pulmonary arterial hypertension patients: the long and short of it. Advances in Pulmonary Hypertension. 2018; 16(3): 125–135.
  306. Yogeswaran A, Richter MJ, Sommer N, et al. Advanced risk stratification of intermediate risk group in pulmonary arterial hypertension. Pulm Circ. 2020; 10(4): 2045894020961739.
  307. Zelt JGE, Hossain A, Sun LY, et al. Incorporation of renal function in mortality risk assessment for pulmonary arterial hypertension. J Heart Lung Transplant. 2020; 39(7): 675–685.
  308. Boucly A, Weatherald JC, Savale L, et al. External validation of a refined 4 strata risk assessment score from the French pulmonary hypertension registry. Eur Respir J. 2022; 59(6): 2102419.
  309. Olsson KM, Richter MJ, Kamp JC, et al. Intravenous treprostinil as an add-on therapy in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2019; 38(7): 748–756.
  310. Tonelli AR, Sahay S, Gordon KW, et al. Impact of inhaled treprostinil on risk stratification with noninvasive parameters: a post hoc analysis of the TRIUMPH and BEAT studies. Pulm Circ. 2020; 10(4): 2045894020977025.
  311. Weatherald J, Boucly A, Launay D, et al. Haemodynamics and serial risk assessment in systemic sclerosis associated pulmonary arterial hypertension. Eur Respir J. 2018; 52(4): 1800678.
  312. Chan L, Chin LMK, Kennedy M, et al. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest. 2013; 143(2): 333–343.
  313. de Man FS, Handoko ML, Groepenhoff H, et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2009; 34(3): 669–675.
  314. Ehlken N, Lichtblau M, Klose H, et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. 2016; 37(1): 35–44.
  315. Grünig E, MacKenzie A, Peacock AJ, et al. Standardized exercise training is feasible, safe, and effective in pulmonary arterial and chronic thromboembolic pulmonary hypertension: results from a large European multicentre randomized controlled trial. Eur Heart J. 2021; 42(23): 2284–2295.
  316. Mereles D, Ehlken N, Kreuscher S, et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006; 114(14): 1482–1489.
  317. Grünig E, Eichstaedt C, Barberà JA, et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur Respir J. 2019; 53(2): 1800332.
  318. Johnson SR, Granton JT, Mehta S. Thrombotic arteriopathy and anticoagulation in pulmonary hypertension. Chest. 2006; 130(2): 545–552.
  319. Olsson K, Delcroix M, Ghofrani H, et al. Anticoagulation and survival in pulmonary arterial hypertension: results from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Circulation. 2014; 129(1): 57–65.
  320. Preston IR, Roberts KE, Miller DP, et al. Effect of warfarin treatment on survival of patients with pulmonary arterial hypertension (PAH) in the Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL). Circulation. 2015; 132(25): 2403–2411.
  321. Khan MS, Usman MS, Siddiqi TJ, et al. Is anticoagulation beneficial in pulmonary arterial hypertension? Circ Cardiovasc Qual Outcomes. 2018; 11(9): e004757.
  322. Wang P, Hu L, Yin Y, et al. Can anticoagulants improve the survival rate for patients with idiopathic pulmonary arterial hypertension? A systematic review and meta-analysis. Thromb Res. 2020; 196: 251–256.
  323. Stickel S, Gin-Sing W, Wagenaar M, et al. The practical management of fluid retention in adults with right heart failure due to pulmonary arterial hypertension. Eur Heart J Suppl. 2019; 21(Suppl K): K46–K53.
  324. Sandoval J, Aguirre JS, Pulido T, et al. Nocturnal oxygen therapy in patients with the Eisenmenger syndrome. Am J Respir Crit Care Med. 2001; 164(9): 1682–1687.
  325. Weitzenblum E, Sautegeau A, Ehrhart M, et al. Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1985; 131(4): 493–498.
  326. Ulrich S, Saxer S, Hasler ED, et al. Effect of domiciliary oxygen therapy on exercise capacity and quality of life in patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension: a randomised, placebo-controlled trial. Eur Respir J. 2019; 54(2): 1900276.
  327. Ulrich S, Hasler ED, Saxer S, et al. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial. Eur Heart J. 2017; 38(15): 1159–1168.
  328. Adir Y, Humbert M, Chaouat A. Sleep-related breathing disorders and pulmonary hypertension. Eur Respir J. 2021; 57(1): 2002258.
  329. McDonagh T, Damy T, Doehner W, et al. Screening, diagnosis and treatment of iron deficiency in chronic heart failure: putting the 2016 European Society of Cardiology heart failure guidelines into clinical practice. Eur J Heart Fail. 2018; 20(12): 1664–1672.
  330. Rhodes CJ, Howard LS, Busbridge M, et al. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights. J Am Coll Cardiol. 2011; 58(3): 300–309.
  331. Ruiter G, Lankhorst S, Boonstra A, et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur Respir J. 2011; 37(6): 1386–1391.
  332. Ruiter G, Lanser IJ, de Man FS, et al. Iron deficiency in systemic sclerosis patients with and without pulmonary hypertension. Rheumatology (Oxford). 2014; 53(2): 285–292.
  333. Van De Bruaene A, Delcroix M, Pasquet A, et al. Iron deficiency is associated with adverse outcome in Eisenmenger patients. Eur Heart J. 2011; 32(22): 2790–2799.
  334. Sonnweber T, Nairz M, Theurl I, et al. The crucial impact of iron deficiency definition for the course of precapillary pulmonary hypertension. PLoS One. 2018; 13(8): e0203396.
  335. Ruiter G, Manders E, Happé CM, et al. Intravenous iron therapy in patients with idiopathic pulmonary arterial hypertension and iron deficiency. Pulm Circ. 2015; 5(3): 466–472.
  336. Viethen T, Gerhardt F, Dumitrescu D, et al. Ferric carboxymaltose improves exercise capacity and quality of life in patients with pulmonary arterial hypertension and iron deficiency: a pilot study. Int J Cardiol. 2014; 175(2): 233–239.
  337. Kramer T, Wissmüller M, Natsina K, et al. Ferric carboxymaltose in patients with pulmonary arterial hypertension and iron deficiency: a long-term study. J Cachexia Sarcopenia Muscle. 2021; 12(6): 1501–1512.
  338. Olsson KM, Fuge J, Brod T, et al. Oral iron supplementation with ferric maltol in patients with pulmonary hypertension. Eur Respir J. 2020; 56(5): 2000616.
  339. Howard LS, He J, Watson GMJ, et al. Supplementation with iron in pulmonary arterial hypertension. Two randomized crossover trials. Ann Am Thorac Soc. 2021; 18(6): 981–988.
  340. Larisch A, Neeb C, de Zwaan M, et al. [Mental distress and wish for psychosomatic treatment of patients with pulmonary hypertension]. Psychother Psychosom Med Psychol. 2014; 64(9-10): 384–389.
  341. Olsson KM, Meltendorf T, Fuge J, et al. Prevalence of mental disorders and impact on quality of life in patients with pulmonary arterial hypertension. Front Psychiatry. 2021; 12: 667602.
  342. Pfeuffer E, Krannich H, Halank M, et al. Anxiety, depression, and health-related QOL in patients diagnosed with PAH or CTEPH. Lung. 2017; 195(6): 759–768.
  343. Zhou X, Shi H, Yang Y, et al. Anxiety and depression in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Results from a Chinese survey. Exp Ther Med. 2020; 19(4): 3124–3132.
  344. Kingman M, Hinzmann B, Sweet O, et al. Living with pulmonary hypertension: unique insights from an international ethnographic study. BMJ Open. 2014; 4(5): e004735.
  345. Harzheim D, Klose H, Pinado FP, et al. Anxiety and depression disorders in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Respir Res. 2013; 14(1): 104.
  346. Anand V, Vallabhajosyula S, Cheungpasitporn W, et al. Inpatient palliative care use in patients with pulmonary arterial hypertension: temporal trends, predictors, and outcomes. Chest. 2020; 158(6): 2568–2578.
  347. Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005; 353(5): 487–497.
  348. Kjellström B, Sandqvist A, Hjalmarsson C, et al. Adherence to disease-specific drug treatment among patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. ERJ Open Research. 2020; 6(4): 00299–2020.
  349. Shah NB, Mitchell RE, Proctor ST, et al. High rates of medication adherence in patients with pulmonary arterial hypertension: An integrated specialty pharmacy approach. PLoS One. 2019; 14(6): e0217798.
  350. Weiss BM, Zemp L, Seifert B, et al. Outcome of pulmonary vascular disease in pregnancy: a systematic overview from 1978 through 1996. J Am Coll Cardiol. 1998; 31(7): 1650–1657.
  351. Bédard E, Dimopoulos K, Gatzoulis MA. Has there been any progress made on pregnancy outcomes among women with pulmonary arterial hypertension? Eur Heart J. 2009; 30(3): 256–265.
  352. Duarte AG, Thomas S, Safdar Z, et al. Management of pulmonary arterial hypertension during pregnancy: a retrospective, multicenter experience. Chest. 2013; 143(5): 1330–1336.
  353. Jaïs X, Olsson KM, Barbera JA, et al. Pregnancy outcomes in pulmonary arterial hypertension in the modern management era. Eur Respir J. 2012; 40(4): 881–885.
  354. Kiely DG, Condliffe R, Webster V, et al. Improved survival in pregnancy and pulmonary hypertension using a multiprofessional approach. BJOG. 2010; 117(5): 565–574.
  355. Luo J, Shi H, Xu Li, et al. Pregnancy outcomes in patients with pulmonary arterial hypertension: A retrospective study. Medicine (Baltimore). 2020; 99(23): e20285.
  356. Kamp JC, von Kaisenberg C, Greve S, et al. Pregnancy in pulmonary arterial hypertension: Midterm outcomes of mothers and offspring. J Heart Lung Transplant. 2021; 40(3): 229–233.
  357. Corbach N, Berlier C, Lichtblau M, et al. Favorable pregnancy outcomes in women with well-controlled pulmonary arterial hypertension. Front Med (Lausanne). 2021; 8: 689764.
  358. Bostock S, Sheares K, Cannon J, et al. The potential effects of pregnancy in a patient with idiopathic pulmonary arterial hypertension responding to calcium channel blockade. Eur Respir J. 2017; 50(6): 1701141.
  359. de Raaf MA, Beekhuijzen M, Guignabert C, et al. Endothelin-1 receptor antagonists in fetal development and pulmonary arterial hypertension. Reprod Toxicol. 2015; 56: 45–51.
  360. Dunn L, Greer R, Flenady V, et al. Sildenafil in pregnancy: a systematic review of maternal tolerance and obstetric and perinatal outcomes. Fetal Diagn Ther. 2017; 41(2): 81–88.
  361. van Giersbergen PLM, Halabi A, Dingemanse J. Pharmacokinetic interaction between bosentan and the oral contraceptives norethisterone and ethinyl estradiol. Int J Clin Pharmacol Ther. 2006; 44(3): 113–118.
  362. Meyer S, McLaughlin VV, Seyfarth HJ, et al. Outcomes of noncardiac, nonobstetric surgery in patients with PAH: an international prospective survey. Eur Respir J. 2013; 41(6): 1302–1307.
  363. Hassan HJ, Housten T, Balasubramanian A, et al. A novel approach to perioperative risk assessment for patients with pulmonary hypertension. ERJ Open Res. 2021; 7(3): 00257–2021.
  364. Halvorsen S, Mehilli J, Cassese S, et al. ESC Scientific Document Group. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur Heart J. 2022 [Epub ahead of print]; 43(39): 3826–3924.
  365. Burns RM, Peacock AJ, Johnson MK, et al. Hypoxaemia in patients with pulmonary arterial hypertension during simulated air travel. Respir Med. 2013; 107(2): 298–304.
  366. Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf). 2017; 219(4): 728–756.
  367. Code of Federal Regulations. Chapter I, Subchapter C, Part 25, Subpart D, Subjgrp - Pressurization. Section 25.841 - Pressurized cabins. Washington, DC: US Government Printing Office; 2012.
  368. Groth A, Saxer S, Bader PR, et al. Acute hemodynamic changes by breathing hypoxic and hyperoxic gas mixtures in pulmonary arterial and chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2018; 270: 262–267.
  369. Roubinian N, Elliott CG, Barnett CF, et al. Effects of commercial air travel on patients with pulmonary hypertension air travel and pulmonary hypertension. Chest. 2012; 142(4): 885–892.
  370. Schneider SR, Mayer LC, Lichtblau M, et al. Effect of normobaric hypoxia on exercise performance in pulmonary hypertension: randomized trial. Chest. 2021; 159(2): 757–771.
  371. Seccombe LM, Chow V, Zhao W, et al. Right heart function during simulated altitude in patients with pulmonary arterial hypertension. Open Heart. 2017; 4(1): e000532.
  372. Thamm M, Voswinckel R, Tiede H, et al. Air travel can be safe and well tolerated in patients with clinically stable pulmonary hypertension. Pulm Circ. 2011; 1(2): 239–243.
  373. Cramer D, Ward S, Geddes D. Assessment of oxygen supplementation during air travel. Thorax. 1996; 51(2): 202–203.
  374. Dubroff J, Melendres L, Lin Y, et al. High geographic prevalence of pulmonary artery hypertension: associations with ethnicity, drug use, and altitude. Pulm Circ. 2020; 10(1): 2045894019894534.
  375. Fakhri S, Hannon K, Moulden K, et al. Residence at moderately high altitude and its relationship with WHO Group 1 pulmonary arterial hypertension symptom severity and clinical characteristics: the Pulmonary Hypertension Association Registry. Pulm Circ. 2020; 10(4): 2045894020964342.
  376. Schneider SR, Mayer LC, Lichtblau M, et al. Effect of a day-trip to altitude (2500 m) on exercise performance in pulmonary hypertension: randomised crossover trial. ERJ Open Res. 2021; 7(4): 00314–2021.
  377. Makowski CT, Rissmiller RW, Bullington WM. Riociguat: a novel new drug for treatment of pulmonary hypertension. Pharmacotherapy. 2015; 35(5): 502–519.
  378. Montani D, Savale L, Natali D, et al. Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J. 2010; 31(15): 1898–1907.
  379. Galiè N, Ussia G, Passarelli P, et al. Role of pharmacologic tests in the treatment of primary pulmonary hypertension. Am J Cardiol. 1995; 75(3): 55A–62A.
  380. Clozel M, Maresta A, Humbert M. Endothelin receptor antagonists. Handb Exp Pharmacol. 2013; 218: 199–227.
  381. Xing J, Cao Y, Yu Y, et al. In vitro micropatterned human pluripotent stem cell test (µP-HPST) for morphometric-based teratogen screening. Sci Rep. 2017; 7(1): 8491.
  382. Galiè N, Olschewski H, Oudiz RJ, et al. Ambrisentan in Pulmonary Arterial Hypertension, Randomized, Double-Blind, Placebo-Controlled, Multicenter, Efficacy Studies (ARIES) Group. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008; 117(23): 3010–3019.
  383. Rubin LJ, Badesch DB, Barst RJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002; 346(12): 896–903.
  384. Humbert M, Segal ES, Kiely DG, et al. Results of European post-marketing surveillance of bosentan in pulmonary hypertension. Eur Respir J. 2007; 30(2): 338–344.
  385. Paul GA, Gibbs JS, Boobis AR, et al. Bosentan decreases the plasma concentration of sildenafil when coprescribed in pulmonary hypertension. Br J Clin Pharmacol. 2005; 60(1): 107–112.
  386. Weber C, Banken L, Birnboeck H, et al. Effect of the endothelin-receptor antagonist bosentan on the pharmacokinetics and pharmacodynamics of warfarin. J Clin Pharmacol. 1999; 39(8): 847–854.
  387. Wrishko RE, Dingemanse J, Yu A, et al. Pharmacokinetic interaction between tadalafil and bosentan in healthy male subjects. J Clin Pharmacol. 2008; 48(5): 610–618.
  388. Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov. 2006; 5(8): 689–702.
  389. Galiè N, Müller K, Scalise AV, et al. PATENT PLUS: a blinded, randomised and extension study of riociguat plus sildenafil in pulmonary arterial hypertension. Eur Respir J. 2015; 45(5): 1314–1322.
  390. Galiè N, Ghofrani HA, Torbicki A, et al. Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005; 353(20): 2148–2157.
  391. Sastry BKS, Narasimhan C, Reddy NK, et al. Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol. 2004; 43(7): 1149–1153.
  392. Simonneau G, Rubin LJ, Galiè N, et al. PACES Study Group. Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension: a randomized trial. Ann Intern Med. 2008; 149(8): 521–530.
  393. Galiè N, Brundage BH, Ghofrani HA, et al. Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009; 119(22): 2894–2903.
  394. Schermuly RT, Janssen W, Weissmann N, et al. Riociguat for the treatment of pulmonary hypertension. Expert Opin Investig Drugs. 2011; 20(4): 567–576.
  395. Ghofrani HA, Galiè N, Grimminger F, et al. PATENT-1 Study Group. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013; 369(4): 330–340.
  396. Galiè N, Manes A, Branzi A. Prostanoids for pulmonary arterial hypertension. Am J Respir Med. 2003; 2(2): 123–137.
  397. Jones DA, Benjamin CW, Linseman DA. Activation of thromboxane and prostacyclin receptors elicits opposing effects on vascular smooth muscle cell growth and mitogen-activated protein kinase signaling cascades. Mol Pharmacol. 1995; 48(5): 890–896.
  398. Sitbon O, Delcroix M, Bergot E, et al. EPITOME-2: An open-label study assessing the transition to a new formulation of intravenous epoprostenol in patients with pulmonary arterial hypertension. Am Heart J. 2014; 167(2): 210–217.
  399. Barst RJ, Rubin LJ, Long WA, et al. Primary Pulmonary Hypertension Study Group. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996; 334(5): 296–301.
  400. Rubin LJ, Mendoza J, Hood M, et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann Intern Med. 1990; 112(7): 485–491.
  401. Badesch DB, Tapson VF, McGoon MD, et al. Continuous intravenous epoprostenol for pulmonary hypertension due to the scleroderma spectrum of disease. A randomized, controlled trial. Ann Intern Med. 2000; 132(6): 425–434.
  402. Krowka MJ, Frantz RP, McGoon MD, et al. Improvement in pulmonary hemodynamics during intravenous epoprostenol (prostacyclin): A study of 15 patients with moderate to severe portopulmonary hypertension. Hepatology. 1999; 30(3): 641–648.
  403. Nunes H, Humbert M, Sitbon O, et al. Prognostic factors for survival in human immunodeficiency virus-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2003; 167(10): 1433–1439.
  404. Rosenzweig EB, Kerstein D, Barst RJ. Long-term prostacyclin for pulmonary hypertension with associated congenital heart defects. Circulation. 1999; 99(14): 1858–1865.
  405. Boucly A, O'Connell C, Savale L, et al. [Tunnelled central venous line-associated infections in patients with pulmonary arterial hypertension treated with intravenous prostacyclin]. Presse Med. 2016; 45(1): 20–28.
  406. Doran AK, Ivy DD, Barst RJ, et al. Scientific Leadership Council of the Pulmonary Hypertension Association. Guidelines for the prevention of central venous catheter-related blood stream infections with prostanoid therapy for pulmonary arterial hypertension. Int J Clin Pract Suppl. 2008(160): 5–9.
  407. Olschewski H, Simonneau G, Galiè N, et al. Aerosolized Iloprost Randomized Study Group. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002; 347(5): 322–329.
  408. Simonneau G, Barst RJ, Galie N, et al. Treprostinil Study Group. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2002; 165(6): 800–804.
  409. Bourge RC, Waxman AB, Gomberg-Maitland M, et al. Treprostinil administered to treat pulmonary arterial hypertension using a fully implantable programmable intravascular delivery system: results of the DelIVery for PAH trial. Chest. 2016; 150(1): 27–34.
  410. Richter MJ, Harutyunova S, Bollmann T, et al. Long-term safety and outcome of intravenous treprostinil via an implanted pump in pulmonary hypertension. J Heart Lung Transplant. 2018; 37(10): 1235–1244.
  411. McLaughlin VV, Benza RL, Rubin LJ, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol. 2010; 55(18): 1915–1922.
  412. Tapson VF, Jing ZC, Xu KF, et al. FREEDOM-C2 Study Team. Oral treprostinil for the treatment of pulmonary arterial hypertension in patients receiving background endothelin receptor antagonist and phosphodiesterase type 5 inhibitor therapy (the FREEDOM-C2 study): a randomized controlled trial. Chest. 2013; 144(3): 952–958.
  413. Tapson VF, Torres F, Kermeen F, et al. Oral treprostinil for the treatment of pulmonary arterial hypertension in patients on background endothelin receptor antagonist and/or phosphodiesterase type 5 inhibitor therapy (the FREEDOM-C study): a randomized controlled trial. Chest. 2012; 142(6): 1383–1390.
  414. Jing ZC, Parikh K, Pulido T, et al. Efficacy and safety of oral treprostinil monotherapy for the treatment of pulmonary arterial hypertension: a randomized, controlled trial. Circulation. 2013; 127(5): 624–633.
  415. White RJ, Jerjes-Sanchez C, Bohns Meyer GM, et al. FREEDOM-EV Investigators. Combination therapy with oral treprostinil for pulmonary arterial hypertension. A double-blind placebo-controlled clinical trial. Am J Respir Crit Care Med. 2020; 201(6): 707–717.
  416. Barst RJ, McGoon M, McLaughlin V, et al. Beraprost Study Group. Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2003; 41(12): 2119–2125.
  417. Galiè N, Humbert M, Vachiéry JL, et al. Arterial Pulmonary Hypertension and Beraprost European (ALPHABET) Study Group. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2002; 39(9): 1496–1502.
  418. Simonneau G, Torbicki A, Hoeper MM, et al. Selexipag: an oral, selective prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. Eur Respir J. 2012; 40(4): 874–880.
  419. Sitbon O, Channick R, Chin KM, et al. GRIPHON Investigators. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med. 2015; 373(26): 2522–2533.
  420. Hoeper MM, McLaughlin VV, Barberá JA, et al. Initial combination therapy with ambrisentan and tadalafil and mortality in patients with pulmonary arterial hypertension: a secondary analysis of the results from the randomised, controlled AMBITION study. Lancet Respir Med. 2016; 4(11): 894–901.
  421. Chin KM, Sitbon O, Doelberg M, et al. Three- versus two-drug therapy for patients with newly diagnosed pulmonary arterial hypertension. J Am Coll Cardiol. 2021; 78(14): 1393–1403.
  422. Badagliacca R, D’Alto M, Ghio S, et al. Risk reduction and hemodynamics with initial combination therapy in pulmonary arterial hypertension. Am J respir Crit Care Med. 2021; 203(4): 484–492.
  423. Hassoun PM, Zamanian RT, Damico R, et al. Ambrisentan and tadalafil up-front combination therapy in scleroderma-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2015; 192(9): 1102–1110.
  424. Kirtania L, Maiti R, Srinivasan A, et al. Effect of combination therapy of endothelin receptor antagonist and phosphodiesterase-5 inhibitor on clinical outcome and pulmonary haemodynamics in patients with pulmonary arterial hypertension: a meta-analysis. Clin Drug Investig. 2019; 39(11): 1031–1044.
  425. Montani D, Lau EM, Dorfmüller P, et al. Pulmonary veno-occlusive disease. Eur Respir J. 2016; 47(5): 1518–1534.
  426. Sitbon O, Jaïs X, Savale L, et al. Upfront triple combination therapy in pulmonary arterial hypertension: a pilot study. Eur Respir J. 2014; 43(6): 1691–1697.
  427. D'Alto M, Badagliacca R, Argiento P, et al. Risk reduction and right heart reverse remodeling by upfront triple combination therapy in pulmonary arterial hypertension. Chest. 2020; 157(2): 376–383.
  428. Boucly A, Savale L, Jaïs X, et al. Association between initial treatment strategy and long-term survival in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2021; 204(7): 842–854.
  429. Hoeper MM, Al-Hiti H, Benza RL, et al. REPLACE investigators. Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): a multicentre, open-label, randomised controlled trial. Lancet Respir Med. 2021; 9(6): 573–584.
  430. Sitbon O, Cottin V, Canuet M, et al. Initial combination therapy of macitentan and tadalafil in pulmonary arterial hypertension. Eur Respir J. 2020; 56(3): 2000673.
  431. Coghlan JG, Channick R, Chin K, et al. Targeting the prostacyclin pathway with selexipag in patients with pulmonary arterial hypertension receiving double combination therapy: insights from the randomized controlled GRIPHON study. Am J Cardiovasc Drugs. 2018; 18(1): 37–47.
  432. Lajoie AC, Lauzière G, Lega JC, et al. Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med. 2016; 4(4): 291–305.
  433. Hoeper MM, Pausch C, Grünig E, et al. Temporal trends in pulmonary arterial hypertension: results from the COMPERA registry. Eur Respir J. 2022; 59(6): 2102024.
  434. Zelt JGE, Sugarman J, Weatherald J, et al. Mortality trends in pulmonary arterial hypertension in Canada: a temporal analysis of survival per ESC/ERS guideline era. Eur Respir J. 2022; 59(6): 2101552.
  435. Hoeper MM, Simonneau G, Corris PA, et al. RESPITE: switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors. Eur Respir J. 2017; 50(3): 1602425.
  436. Bartolome SD, Sood N, Shah TG, et al. Mortality in patients with pulmonary arterial hypertension treated with continuous prostanoids. Chest. 2018; 154(3): 532–540.
  437. Galiè N, Jansa P, Pulido T, et al. SERAPHIN haemodynamic substudy: the effect of the dual endothelin receptor antagonist macitentan on haemodynamic parameters and NT-proBNP levels and their association with disease progression in patients with pulmonary arterial hypertension. Eur Heart J. 2017; 38(15): 1147–1155.
  438. Simonneau G, Rubin LJ, Galiè N, et al. PACES Study Group. Long-term sildenafil added to intravenous epoprostenol in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2014; 33(7): 689–697.
  439. Benza RL, Seeger W, McLaughlin VV, et al. Long-term effects of inhaled treprostinil in patients with pulmonary arterial hypertension: the Treprostinil Sodium Inhalation Used in the Management of Pulmonary Arterial Hypertension (TRIUMPH) study open-label extension. J Heart Lung Transplant. 2011; 30(12): 1327–1333.
  440. Rubin LJ, Galiè N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension: a long-term extension study (PATENT-2). Eur Respir J. 2015; 45(5): 1303–1313.
  441. Hoeper MM, Leuchte H, Halank M, et al. Combining inhaled iloprost with bosentan in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2006; 28(4): 691–694.
  442. McLaughlin VV, Oudiz RJ, Frost A, et al. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006; 174(11): 1257–1263.
  443. Badesch DB, Feldman J, Keogh A, et al. ARIES-3: ambrisentan therapy in a diverse population of patients with pulmonary hypertension. Cardiovasc Ther. 2012; 30(2): 93–99.
  444. Dardi F, Manes A, Palazzini M, et al. Combining bosentan and sildenafil in pulmonary arterial hypertension patients failing monotherapy: real-world insights. Eur Respir J. 2015; 46(2): 414–421.
  445. Iversen K, Jensen AS, Jensen TV, et al. Combination therapy with bosentan and sildenafil in Eisenmenger syndrome: a randomized, placebo-controlled, double-blinded trial. Eur Heart J. 2010; 31(9): 1124–1131.
  446. Vizza CD, Jansa P, Teal S, et al. Sildenafil dosed concomitantly with bosentan for adult pulmonary arterial hypertension in a randomized controlled trial. BMC Cardiovasc Disord. 2017; 17(1): 239.
  447. Hoeper MM, Huscher D, Ghofrani HA, et al. Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: results from the COMPERA registry. Int J Cardiol. 2013; 168(2): 871–880.
  448. Khou V, Anderson JJ, Strange G, et al. Diagnostic delay in pulmonary arterial hypertension: Insights from the Australian and New Zealand pulmonary hypertension registry. Respirology. 2020; 25(8): 863–871.
  449. McLaughlin VV, Vachiery JL, Oudiz RJ, et al. Patients with pulmonary arterial hypertension with and without cardiovascular risk factors: Results from the AMBITION trial. J Heart Lung Transplant. 2019; 38(12): 1286–1295.
  450. Opitz CF, Hoeper MM, Gibbs JS, et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J Am Coll Cardiol. 2016; 68(4): 368–378.
  451. Lewis RA, Thompson AA, Billings CG, et al. Mild parenchymal lung disease and/or low diffusion capacity impacts survival and treatment response in patients diagnosed with idiopathic pulmonary arterial hypertension. Eur Respir J. 2020; 55(6): 2000041.
  452. Valentin S, Maurac A, Sitbon O, et al. Outcomes of patients with decreased arterial oxyhaemoglobin saturation on pulmonary arterial hypertension drugs. Eur Respir J. 2021; 58(5): 2004066.
  453. Rosenkranz S, Channick R, Chin KM, et al. The impact of comorbidities on selexipag treatment effect in patients with pulmonary arterial hypertension: insights from the GRIPHON study. Eur J Heart Fail. 2022; 24(1): 205–214.
  454. Khan MS, Memon MM, Amin E, et al. Use of balloon atrial septostomy in patients with advanced pulmonary arterial hypertension: a systematic review and meta-analysis. Chest. 2019; 156(1): 53–63.
  455. Sandoval J, Gaspar J, Pulido T, et al. Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension. A therapeutic alternative for patients nonresponsive to vasodilator treatment. J Am Coll Cardiol. 1998; 32(2): 297–304.
  456. Aggarwal M, Grady RM, Choudhry S, et al. Potts shunt improves right ventricular function and coupling with pulmonary circulation in children with suprasystemic pulmonary arterial hypertension. Circ Cardiovasc Imaging. 2018; 11(12): e007964.
  457. Baruteau AE, Belli E, Boudjemline Y, et al. Palliative Potts shunt for the treatment of children with drug-refractory pulmonary arterial hypertension: updated data from the first 24 patients. Eur J Cardiothorac Surg. 2015; 47(3): e105–e110.
  458. Grady RM, Canter MW, Wan F, et al. International Registry Potts Shunt. Pulmonary-to-systemic arterial shunt to Treat children with severe pulmonary hypertension. J Am Coll Cardiol. 2021; 78(5): 468–477.
  459. Rosenzweig EB, Ankola A, Krishnan U, et al. A novel unidirectional-valved shunt approach for end-stage pulmonary arterial hypertension: Early experience in adolescents and adults. J Thorac Cardiovasc Surg. 2021; 161(4): 1438–1446.e2.
  460. Ciarka A, Doan Vi, Velez-Roa S, et al. Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010; 181(11): 1269–1275.
  461. Velez-Roa S, Ciarka A, Najem B, et al. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004; 110(10): 1308–1312.
  462. Juratsch CE, Jengo JA, Castagna J, et al. Experimental pulmonary hypertension produced by surgical and chemical denervation of the pulmonary vasculature. Chest. 1980; 77(4): 525–530.
  463. Rothman A, Jonas M, Castel D, et al. Pulmonary artery denervation using catheter-based ultrasonic energy. EuroIntervention. 2019; 15(8): 722–730.
  464. Chen SL, Zhang FF, Xu J, et al. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J Am Coll Cardiol. 2013; 62(12): 1092–1100.
  465. Rothman AMK, Vachiery JL, Howard LS, et al. Intravascular ultrasound pulmonary artery denervation to treat pulmonary arterial hypertension (TROPHY1): multicenter, early feasibility study. JACC Cardiovasc Interv. 2020; 13(8): 989–999.
  466. Sztrymf B, Souza R, Bertoletti L, et al. Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J. 2010; 35(6): 1286–1293.
  467. Campo A, Mathai SC, Le Pavec J, et al. Outcomes of hospitalisation for right heart failure in pulmonary arterial hypertension. Eur Respir J. 2011; 38(2): 359–367.
  468. Hoeper MM, Benza RL, Corris P, et al. Intensive care, right ventricular support and lung transplantation in patients with pulmonary hypertension. Eur Respir J. 2019; 53(1): 1801906.
  469. Kapur NK, Esposito ML, Bader Y, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation. 2017; 136(3): 314–326.
  470. Konstam MA, Kiernan MS, Bernstein D, et al. American Heart Association Council on Clinical Cardiology, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Surgery and Anesthesia. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation. 2018; 137(20): e578–e622.
  471. Olsson KM, Richter MJ, Kamp JC, et al. Refined risk stratification in pulmonary arterial hypertension and timing of lung transplantation. Eur Respir J. 2022; 60(2): 2103087.
  472. Moser B, Jaksch P, Taghavi S, et al. Lung transplantation for idiopathic pulmonary arterial hypertension on intraoperative and postoperatively prolonged extracorporeal membrane oxygenation provides optimally controlled reperfusion and excellent outcome. Eur J Cardiothorac Surg. 2018; 53(1): 178–185.
  473. Christie JD, Edwards LB, Kucheryavaya AY, et al. International Society of Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J Heart Lung Transplant. 2012; 31(10): 1073–1086.
  474. Egan TM, Edwards LB. Effect of the lung allocation score on lung transplantation in the United States. J Heart Lung Transplant. 2016; 35(4): 433–439.
  475. Savale L, Le Pavec J, Mercier O, et al. Impact of high-priority allocation on lung and heart-lung transplantation for pulmonary hypertension. Ann Thorac Surg. 2017; 104(2): 404–411.
  476. Yusen RD, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-second Official Adult Lung and Heart-Lung Transplantation Report--2015; Focus Theme: Early Graft Failure. J Heart Lung Transplant. 2015; 34(10): 1264–1277.
  477. Hindricks G, Potpara T, Dagres N, et al. ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021; 42(5): 373–398.
  478. Wanamaker B, Cascino T, McLaughlin V, et al. Atrial arrhythmias in pulmonary hypertension: pathogenesis, prognosis and management. Arrhythm Electrophysiol Rev. 2018; 7(1): 43–48.
  479. Andersen MØ, Diederichsen SZ, Svendsen JH, et al. Assessment of cardiac arrhythmias using long-term continuous monitoring in patients with pulmonary hypertension. Int J Cardiol. 2021; 334: 110–115.
  480. Olsson KM, Nickel NP, Tongers J, et al. Atrial flutter and fibrillation in patients with pulmonary hypertension. Int J Cardiol. 2013; 167(5): 2300–2305.
  481. Wen Li, Sun ML, An P, et al. Frequency of supraventricular arrhythmias in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol. 2014; 114(9): 1420–1425.
  482. Luesebrink U, Fischer D, Gezgin F, et al. Ablation of typical right atrial flutter in patients with pulmonary hypertension. Heart Lung Circ. 2012; 21(11): 695–699.
  483. Santangeli P, Zado ES, Hutchinson MD, et al. Prevalence and distribution of focal triggers in persistent and long-standing persistent atrial fibrillation. Heart Rhythm. 2016; 13(2): 374–382.
  484. Ghigna MR, Guignabert C, Montani D, et al. BMPR2 mutation status influences bronchial vascular changes in pulmonary arterial hypertension. Eur Respir J. 2016; 48(6): 1668–1681.
  485. Rasciti E, Sverzellati N, Silva M, et al. Bronchial artery embolization for the treatment of haemoptysis in pulmonary hypertension. Radiol Med. 2017; 122(4): 257–264.
  486. Yang S, Wang J, Kuang T, et al. Efficacy and safety of bronchial artery embolization on hemoptysis in chronic thromboembolic pulmonary hypertension: a pilot prospective cohort study. Crit Care Med. 2019; 47(3): e182–e189.
  487. Demerouti EA, Manginas AN, Athanassopoulos GD, et al. Complications leading to sudden cardiac death in pulmonary arterial hypertension. Respir Care. 2013; 58(7): 1246–1254.
  488. Kreibich M, Siepe M, Kroll J, et al. Aneurysms of the pulmonary artery. Circulation. 2015; 131(3): 310–316.
  489. Mak SM, Strickland N, Gopalan D. Complications of pulmonary hypertension: a pictorial review. Br J Radiol. 2017; 90(1070): 20160745.
  490. Nuche J, Montero Cabezas JM, Alonso Charterina S, et al. Management of incidentally diagnosed pulmonary artery dissection in patients with pulmonary arterial hypertension. Eur J Cardiothorac Surg. 2019; 56(1): 210–212.
  491. Russo V, Zompatori M, Galiè N. Extensive right pulmonary artery dissection in a young patient with chronic pulmonary hypertension. Heart. 2012; 98(3): 265–266.
  492. Żyłkowska J, Kurzyna M, Florczyk M, et al. Pulmonary artery dilatation correlates with the risk of unexpected death in chronic arterial or thromboembolic pulmonary hypertension. Chest. 2012; 142(6): 1406–1416.
  493. Florczyk M, Wieteska M, Kurzyna M, et al. Acute and chronic dissection of pulmonary artery: new challenges in pulmonary arterial hypertension? Pulm Circ. 2018; 8(2): 2045893217749114.
  494. Velázquez Martín M, Montero Cabezas JM, Huertas S, et al. Clinical relevance of adding intravascular ultrasound to coronary angiography for the diagnosis of extrinsic left main coronary artery compression by a pulmonary artery aneurysm in pulmonary hypertension. Catheter Cardiovasc Interv. 2021; 98(4): 691–700.
  495. Torres F, Farber H, Ristic A, et al. Efficacy and safety of ralinepag, a novel oral IP agonist, in PAH patients on mono or dual background therapy: results from a phase 2 randomised, parallel group, placebo-controlled trial. Eur Respir J. 2019; 54(4): 1901030.
  496. Humbert M, McLaughlin V, Gibbs JS, et al. PULSAR Trial Investigators. Sotatercept for the treatment of pulmonary arterial hypertension. N Engl J Med. 2021; 384(13): 1204–1215.
  497. Chin KM, Channick RN, Rubin LJ. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest. 2006; 130(6): 1657–1663.
  498. Zamanian RT, Hedlin H, Greuenwald P, et al. Features and outcomes of methamphetamine-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2018; 197(6): 788–800.
  499. Savale L, Sattler C, Günther S, et al. Pulmonary arterial hypertension in patients treated with interferon. Eur Respir J. 2014; 44(6): 1627–1634.
  500. Weatherald J, Chaumais MC, Savale L, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. Eur Respir J. 2017; 50(1): 1700217.
  501. Lyon A, López-Fernández T, Couch L, et al. ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022: ehac244.
  502. Avouac J, Airò P, Meune C, et al. Prevalence of pulmonary hypertension in systemic sclerosis in European Caucasians and metaanalysis of 5 studies. J Rheumatol. 2010; 37(11): 2290–2298.
  503. Launay D, Montani D, Hassoun PM, et al. Clinical phenotypes and survival of pre-capillary pulmonary hypertension in systemic sclerosis. PLoS One. 2018; 13(5): e0197112.
  504. Launay D, Sobanski V, Hachulla E, et al. Pulmonary hypertension in systemic sclerosis: different phenotypes. Eur Respir Rev. 2017; 26(145): 170056.
  505. Hachulla E, Jais X, Cinquetti G, et al. French Collaborators Recruiting Members(∗). Pulmonary arterial hypertension associated with systemic lupus erythematosus: results from the french pulmonary hypertension registry. Chest. 2018; 153(1): 143–151.
  506. Jais X, Launay D, Yaici A, et al. Immunosuppressive therapy in lupus- and mixed connective tissue disease-associated pulmonary arterial hypertension: a retrospective analysis of twenty-three cases. Arthritis Rheum. 2008; 58(2): 521–531.
  507. Qian J, Li M, Zhang X, et al. Long-term prognosis of patients with systemic lupus erythematosus-associated pulmonary arterial hypertension: CSTAR-PAH cohort study. Eur Respir J. 2019; 53(2): 1800081.
  508. Sanges S, Yelnik CM, Sitbon O, et al. Pulmonary arterial hypertension in idiopathic inflammatory myopathies: Data from the French pulmonary hypertension registry and review of the literature. Medicine (Baltimore). 2016; 95(39): e4911.
  509. Wang J, Li M, Wang Q, et al. Pulmonary arterial hypertension associated with primary Sjögren's syndrome: a multicentre cohort study from China. Eur Respir J. 2020; 56(5): 1902157.
  510. Montani D, Henry J, O'Connell C, et al. Association between rheumatoid arthritis and pulmonary hypertension: data from the french pulmonary hypertension registry. Respiration. 2018; 95(4): 244–250.
  511. Humbert M, Sitbon O, Chaouat A, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006; 173(9): 1023–1030.
  512. Humbert M, Khaltaev N, Bousquet J, et al. Pulmonary hypertension: from an orphan disease to a public health problem. Chest. 2007; 132(2): 365–367.
  513. Günther S, Jaïs X, Maitre S, et al. Computed tomography findings of pulmonary venoocclusive disease in scleroderma patients presenting with precapillary pulmonary hypertension. Arthritis Rheum. 2012; 64(9): 2995–3005.
  514. Hsu S, Kokkonen-Simon KM, Kirk JA, et al. Right ventricular myofilament functional differences in humans with systemic sclerosis-associated versus idiopathic pulmonary arterial hypertension. Circulation. 2018; 137(22): 2360–2370.
  515. Chauvelot L, Gamondes D, Berthiller J, et al. Hemodynamic response to treatment and outcomes in pulmonary hypertension associated with interstitial lung disease versus pulmonary arterial hypertension in systemic sclerosis: data from a study identifying prognostic factors in pulmonary hypertension associated with interstitial lung disease. Arthritis Rheumatol. 2021; 73(2): 295–304.
  516. Launay D, Sitbon O, Hachulla E, et al. Survival in systemic sclerosis-associated pulmonary arterial hypertension in the modern management era. Ann Rheum Dis. 2013; 72(12): 1940–1946.
  517. Ramjug S, Hussain N, Hurdman J, et al. Idiopathic and systemic sclerosis-associated pulmonary arterial hypertension: a comparison of demographic, hemodynamic, and MRI characteristics and outcomes. Chest. 2017; 152(1): 92–102.
  518. Pan J, Lei L, Zhao C. Comparison between the efficacy of combination therapy and monotherapy in connective tissue disease associated pulmonary arterial hypertension: a systematic review and meta-analysis. Clin Exp Rheumatol. 2018; 36(6): 1095–1102.
  519. Sanchez O, Sitbon O, Jaïs X, et al. Immunosuppressive therapy in connective tissue diseases-associated pulmonary arterial hypertension. Chest. 2006; 130(1): 182–189.
  520. Humbert M, Coghlan JG, Ghofrani HA, et al. Riociguat for the treatment of pulmonary arterial hypertension associated with connective tissue disease: results from PATENT-1 and PATENT-2. Ann Rheum Dis. 2017; 76(2): 422–426.
  521. Kawut SM, Taichman DB, Archer-Chicko CL, et al. Hemodynamics and survival in patients with pulmonary arterial hypertension related to systemic sclerosis. Chest. 2003; 123(2): 344–350.
  522. Trombetta AC, Pizzorni C, Ruaro B, et al. Effects of longterm treatment with bosentan and iloprost on nailfold absolute capillary number, fingertip blood perfusion, and clinical status in systemic sclerosis. J Rheumatol. 2016; 43(11): 2033–2041.
  523. Pradère P, Tudorache I, Magnusson J, et al. Working Group on Heart/Lung Transplantation in Systemic Sclerosis. Lung transplantation for scleroderma lung disease: an international, multicenter, observational cohort study. J Heart Lung Transplant. 2018; 37(7): 903–911.
  524. Gaine S, Chin K, Coghlan G, et al. Selexipag for the treatment of connective tissue disease-associated pulmonary arterial hypertension. Eur Respir J. 2017; 50(2): 1602493.
  525. Barbaro G, Lucchini A, Pellicelli AM, et al. Highly active antiretroviral therapy compared with HAART and bosentan in combination in patients with HIV-associated pulmonary hypertension. Heart. 2006; 92(8): 1164–1166.
  526. Degano B, Guillaume M, Savale L, et al. HIV-associated pulmonary arterial hypertension: survival and prognostic factors in the modern therapeutic era. AIDS. 2010; 24(1): 67–75.
  527. Sitbon O. HIV-related pulmonary arterial hypertension: clinical presentation and management. AIDS. 2008; 22 Suppl 3: S55–S62.
  528. Opravil M, Sereni D. Natural history of HIV-associated pulmonary arterial hypertension: trends in the HAART era. AIDS. 2008; 22 Suppl 3: S35–S40.
  529. Humbert M, Monti G, Fartoukh M, et al. Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur Respir J. 1998; 11(3): 554–559.
  530. Mehta NJ, Khan IA, Mehta RN, et al. HIV-Related pulmonary hypertension: analytic review of 131 cases. Chest. 2000; 118(4): 1133–1141.
  531. Zuber JP, Calmy A, Evison JM, et al. Swiss HIV Cohort Study Group. Pulmonary arterial hypertension related to HIV infection: improved hemodynamics and survival associated with antiretroviral therapy. Clin Infect Dis. 2004; 38(8): 1178–1185.
  532. Sitbon O, Gressin V, Speich R, et al. Bosentan for the treatment of human immunodeficiency virus-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2004; 170(11): 1212–1217.
  533. Degano B, Yaïci A, Le Pavec J, et al. Long-term effects of bosentan in patients with HIV-associated pulmonary arterial hypertension. Eur Respir J. 2009; 33(1): 92–98.
  534. Carlsen J, Kjeldsen K, Gerstoft J. Sildenafil as a successful treatment of otherwise fatal HIV-related pulmonary hypertension. AIDS. 2002; 16(11): 1568–1569.
  535. Schumacher YO, Zdebik A, Huonker M, et al. Sildenafil in HIV-related pulmonary hypertension. AIDS. 2001; 15(13): 1747–1748.
  536. Muirhead GJ, Wulff MB, Fielding A, et al. Pharmacokinetic interactions between sildenafil and saquinavir/ritonavir. Br J Clin Pharmacol. 2000; 50(2): 99–107.
  537. Garraffo R, Lavrut T, Ferrando S, et al. Effect of tipranavir/ritonavir combination on the pharmacokinetics of tadalafil in healthy volunteers. J Clin Pharmacol. 2011; 51(7): 1071–1078.
  538. Aguilar RV, Farber HW. Epoprostenol (prostacyclin) therapy in HIV-associated pulmonary hypertension. Am J Respir Crit Care Med. 2000; 162(5): 1846–1850.
  539. Cea-Calvo L, Escribano Subías P, Tello de Menesses R, et al. [Treatment of HIV-associated pulmonary hypertension with treprostinil]. Rev Esp Cardiol. 2003; 56(4): 421–425.
  540. Ghofrani HA, Friese G, Discher T, et al. Inhaled iloprost is a potent acute pulmonary vasodilator in HIV-related severe pulmonary hypertension. Eur Respir J. 2004; 23(2): 321–326.
  541. Bigna JJ, Sime PS, Koulla-Shiro S. HIV related pulmonary arterial hypertension: epidemiology in Africa, physiopathology, and role of antiretroviral treatment. AIDS Res Ther. 2015; 12: 36.
  542. Ryom L, Cotter A, De Miguel R, et al. EACS Governing Board. 2019 update of the European AIDS Clinical Society Guidelines for treatment of people living with HIV version 10.0. HIV Med. 2020; 21(10): 617–624.
  543. Krowka MJ, Miller DP, Barst RJ, et al. Portopulmonary hypertension: a report from the US-based REVEAL Registry. Chest. 2012; 141(4): 906–915.
  544. Lazaro Salvador M, Quezada Loaiza CA, Rodríguez Padial L, et al. REHAP Investigators. Portopulmonary hypertension: prognosis and management in the current treatment era - results from the REHAP registry. Intern Med J. 2021; 51(3): 355–365.
  545. Savale L, Guimas M, Ebstein N, et al. Portopulmonary hypertension in the current era of pulmonary hypertension management. J Hepatol. 2020; 73(1): 130–139.
  546. Baiges A, Turon F, Simón-Talero M, et al. REHEVASC, VALDIG an EASL consortium, Abernethy group. Congenital extrahepatic portosystemic shunts (Abernethy malformation): an international observational study. Hepatology. 2020; 71(2): 658–669.
  547. Fussner LA, Iyer VN, Cartin-Ceba R, et al. Intrapulmonary vascular dilatations are common in portopulmonary hypertension and may be associated with decreased survival. Liver Transpl. 2015; 21(11): 1355–1364.
  548. Hoeper MM, Halank M, Marx C, et al. Bosentan therapy for portopulmonary hypertension. Eur Respir J. 2005; 25(3): 502–508.
  549. Olsson KM, Meyer K, Berliner D, et al. Development of hepatopulmonary syndrome during combination therapy for portopulmonary hypertension. Eur Respir J. 2019; 53(1): 1801880.
  550. Krowka MJ, Plevak DJ, Findlay JY, et al. Pulmonary hemodynamics and perioperative cardiopulmonary-related mortality in patients with portopulmonary hypertension undergoing liver transplantation. Liver Transpl. 2000; 6(4): 443–450.
  551. Cartin-Ceba R, Burger C, Swanson K, et al. Clinical outcomes after liver transplantation in patients with portopulmonary hypertension. Transplantation. 2021; 105(10): 2283–2290.
  552. Deroo R, Trépo E, Holvoet T, et al. Vasomodulators and liver transplantation for portopulmonary hypertension: evidence from a systematic review and meta-analysis. Hepatology. 2020; 72(5): 1701–1716.
  553. Sadd CJ, Osman F, Li Z, et al. Long-term outcomes and survival in moderate-severe portopulmonary hypertension after liver transplant. Transplantation. 2021; 105(2): 346–353.
  554. Savale L, Sattler C, Coilly A, et al. Long-term outcome in liver transplantation candidates with portopulmonary hypertension. Hepatology. 2017; 65(5): 1683–1692.
  555. Diller GP, Kempny A, Alonso-Gonzalez R, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation. 2015; 132(22): 2118–2125.
  556. van Riel AC, Schuuring MJ, van Hessen ID, et al. Contemporary prevalence of pulmonary arterial hypertension in adult congenital heart disease following the updated clinical classification. Int J Cardiol. 2014; 174(2): 299–305.
  557. Lammers AE, Bauer LJ, Diller GP, et al. German Competence Network for Congenital Heart Defects Investigators. Pulmonary hypertension after shunt closure in patients with simple congenital heart defects. Int J Cardiol. 2020; 308: 28–32.
  558. Ntiloudi D, Zanos S, Gatzoulis MA, et al. How to evaluate patients with congenital heart disease-related pulmonary arterial hypertension. Expert Rev Cardiovasc Ther. 2019; 17(1): 11–18.
  559. Dimopoulos K, Condliffe R, Tulloh RMR, et al. CHAMPION Steering Committee. Echocardiographic screening for pulmonary hypertension in congenital heart disease: JACC review topic of the week. J Am Coll Cardiol. 2018; 72(22): 2778–2788.
  560. Kempny A, Dimopoulos K, Fraisse A, et al. Blood viscosity and its relevance to the diagnosis and management of pulmonary hypertension. J Am Coll Cardiol. 2019; 73(20): 2640–2642.
  561. Baroutidou A, Arvanitaki A, Hatzidakis A, et al. Eisenmenger syndrome: diagnosis, prognosis and clinical management. Heart. 2020; 106(21): 1638–1645.
  562. Diller GP, Körten MA, Bauer UMM, et al. German Competence Network for Congenital Heart Defects Investigators. Current therapy and outcome of Eisenmenger syndrome: data of the German National Register for congenital heart defects. Eur Heart J. 2016; 37(18): 1449–1455.
  563. Kempny A, Hjortshøj CS, Gu H, et al. Predictors of death in contemporary adult patients with eisenmenger syndrome: a multicenter study. Circulation. 2017; 135(15): 1432–1440.
  564. Arvind B, Relan J, Kothari SS. "Treat and repair" strategy for shunt lesions: a critical review. Pulm Circ. 2020; 10(2): 2045894020917885.
  565. Brida M, Nashat H, Gatzoulis MA. Pulmonary arterial hypertension: closing the gap in congenital heart disease. Curr Opin Pulm Med. 2020; 26(5): 422–428.
  566. van der Feen DE, Bartelds B, de Boer RA, et al. Assessment of reversibility in pulmonary arterial hypertension and congenital heart disease. Heart. 2019; 105(4): 276–282.
  567. Becker-Grünig T, Klose H, Ehlken N, et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int J Cardiol. 2013; 168(1): 375–381.
  568. Hartopo AB, Anggrahini DW, Nurdiati DS, et al. Severe pulmonary hypertension and reduced right ventricle systolic function associated with maternal mortality in pregnant uncorrected congenital heart diseases. Pulm Circ. 2019; 9(4): 2045894019884516.
  569. Li Q, Dimopoulos K, Liu T, et al. Peripartum outcomes in a large population of women with pulmonary arterial hypertension associated with congenital heart disease. Eur J Prev Cardiol. 2019; 26(10): 1067–1076.
  570. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. ESC Scientific Document Group. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018; 39(34): 3165–3241.
  571. Blanche C, Alonso-Gonzalez R, Uribarri A, et al. Use of intravenous iron in cyanotic patients with congenital heart disease and/or pulmonary hypertension. Int J Cardiol. 2018; 267: 79–83.
  572. Bertoletti L, Mismetti V, Giannakoulas G. Use of anticoagulants in patients with pulmonary hypertension. Hamostaseologie. 2020; 40(3): 348–355.
  573. Freisinger E, Gerß J, Makowski L, et al. Current use and safety of novel oral anticoagulants in adults with congenital heart disease: results of a nationwide analysis including more than 44 000 patients. Eur Heart J. 2020; 41(43): 4168–4177.
  574. Galiè N, Beghetti M, Gatzoulis MA, et al. Bosentan Randomized Trial of Endothelin Antagonist Therapy-5 (BREATHE-5) Investigators. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation. 2006; 114(1): 48–54.
  575. Gatzoulis MA, Landzberg M, Beghetti M, et al. MAESTRO Study Investigators. Evaluation of macitentan in patients with Eisenmenger syndrome. Circulation. 2019; 139(1): 51–63.
  576. Zuckerman WA, Leaderer D, Rowan CA, et al. Ambrisentan for pulmonary arterial hypertension due to congenital heart disease. Am J Cardiol. 2011; 107(9): 1381–1385.
  577. Nashat H, Kempny A, Harries C, et al. A single-centre, placebo-controlled, double-blind randomised cross-over study of nebulised iloprost in patients with Eisenmenger syndrome: A pilot study. Int J Cardiol. 2020; 299: 131–135.
  578. D'Alto M, Constantine A, Balint OH, et al. The effects of parenteral prostacyclin therapy as add-on treatment to oral compounds in Eisenmenger syndrome. Eur Respir J. 2019; 54(5): 1901401.
  579. Manes A, Palazzini M, Leci E, et al. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease: a comparison between clinical subgroups. Eur Heart J. 2014; 35(11): 716–724.
  580. Savale L, Manes A. Pulmonary arterial hypertension populations of special interest: portopulmonary hypertension and pulmonary arterial hypertension associated with congenital heart disease. Eur Heart J Suppl. 2019; 21(Suppl K): K37–K45.
  581. Dimopoulos K, Diller GP, Opotowsky AR, et al. Definition and management of segmental pulmonary hypertension. J Am Heart Assoc. 2018; 7(14): e008587.
  582. Amedro P, Gavotto A, Abassi H, et al. SV-INHIBITION study investigators. Efficacy of phosphodiesterase type 5 inhibitors in univentricular congenital heart disease: the SV-INHIBITION study design. ESC Heart Fail. 2020; 7(2): 747–756.
  583. Goldberg DJ, Zak V, Goldstein BH, et al. Pediatric Heart Network Investigators. Results of the FUEL Trial. Circulation. 2020; 141(8): 641–651.
  584. Ridderbos FJS, Hagdorn QAJ, Berger RMF. Pulmonary vasodilator therapy as treatment for patients with a Fontan circulation: the Emperor's new clothes? Pulm Circ. 2018; 8(4): 2045894018811148.
  585. Dimopoulos K, Muthiah K, Alonso-Gonzalez R, et al. Heart or heart-lung transplantation for patients with congenital heart disease in England. Heart. 2019; 105(8): 596–602.
  586. Lapa M, Dias B, Jardim C, et al. Cardiopulmonary manifestations of hepatosplenic schistosomiasis. Circulation. 2009; 119(11): 1518–1523.
  587. Knafl D, Gerges C, King CH, et al. Schistosomiasis-associated pulmonary arterial hypertension: a systematic review. Eur Respir Rev. 2020; 29(155): 190089.
  588. Fernandes CJ, Piloto B, Castro M, et al. Survival of patients with schistosomiasis-associated pulmonary arterial hypertension in the modern management era. Eur Respir J. 2018; 51(6): 1800307.
  589. Weatherald J, Dorfmüller P, Perros F, et al. Pulmonary capillary haemangiomatosis: a distinct entity? Eur Respir Rev. 2020; 29(156): 190168.
  590. Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019; 53(1): 1801887.
  591. Montani D, Girerd B, Jaïs X, et al. Clinical phenotypes and outcomes of heritable and sporadic pulmonary veno-occlusive disease: a population-based study. Lancet Respir Med. 2017; 5(2): 125–134.
  592. Pérez-Olivares C, Segura de la Cal T, Flox-Camacho Á, et al. The role of cardiopulmonary exercise test in identifying pulmonary veno-occlusive disease. Eur Respir J. 2021; 57(6): 2100115.
  593. Bergbaum C, Samaranayake CB, Pitcher A, et al. A case series on the use of steroids and mycophenolate mofetil in idiopathic and heritable pulmonary veno-occlusive disease: is there a role for immunosuppression? Eur Respir J. 2021; 57(6): 2004354.
  594. van Loon RL, Roofthooft MTR, Hillege HL, et al. Pediatric pulmonary hypertension in the Netherlands: epidemiology and characterization during the period 1991 to 2005. Circulation. 2011; 124(16): 1755–1764.
  595. del Cerro Marín MJ, Sabaté Rotés A, Rodriguez Ogando A, et al. REHIPED Investigators. Assessing pulmonary hypertensive vascular disease in childhood. Data from the Spanish registry. Am J Respir Crit Care Med. 2014; 190(12): 1421–1429.
  596. Li L, Jick S, Breitenstein S, et al. Pulmonary arterial hypertension in the USA: an epidemiological study in a large insured pediatric population. Pulm Circ. 2017; 7(1): 126–136.
  597. Berger RMF, Beghetti M, Humpl T, et al. Clinical features of paediatric pulmonary hypertension: a registry study. Lancet. 2012; 379(9815): 537–546.
  598. Abman SH, Mullen MP, Sleeper LA, et al. Pediatric Pulmonary Hypertension Network. Characterisation of paediatric pulmonary hypertensive vascular disease from the PPHNet Registry. Eur Respir J. 2021; 59(1): 2003337.
  599. Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. Eur Respir J. 2019; 53(1): 1801916.
  600. Haarman MG, Kerstjens-Frederikse WS, Vissia-Kazemier TR, et al. The genetic epidemiology of pediatric pulmonary arterial hypertension. J Pediatr. 2020; 225: 65–73.e5.
  601. Levy M, Eyries M, Szezepanski I, et al. Genetic analyses in a cohort of children with pulmonary hypertension. Eur Respir J. 2016; 48(4): 1118–1126.
  602. Mourani P, Abman S. Pulmonary hypertension and vascular abnormalities in bronchopulmonary dysplasia. Clin Perinatol. 2015; 42(4): 839–855.
  603. van Loon RL, Roofthooft MTR, van Osch-Gevers M, et al. Clinical characterization of pediatric pulmonary hypertension: complex presentation and diagnosis. J Pediatr. 2009; 155(2): 176–82.e1.
  604. Arjaans S, Zwart EAH, Ploegstra MJ, et al. Identification of gaps in the current knowledge on pulmonary hypertension in extremely preter infants: a systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2018; 32(3): 258–267, doi: 10.1111/ppe.12444, indexed in Pubmed: 29341209. 604a. Haarman MG, Douwes JM, Ploegstra MJ, et al. The clinical value of proposed risk stratification tools in pediatric pulmonary arterial hypertension. Am J Respir Crit Care Med. 2019; 200(10): 1312–1315, doi: 10.1164/rccm.201902-0266LE, indexed in Pubmed: 31298925.
  605. Beghetti M, Schulze-Neick I, Berger RMF, et al. TOPP Investigators. Haemodynamic characterisation and heart catheterisation complications in children with pulmonary hypertension: Insights from the Global TOPP Registry (tracking outcomes and practice in paediatric pulmonary hypertension). Int J Cardiol. 2016; 203: 325–330.
  606. Ploegstra MJ, Zijlstra WMH, Douwes JM, et al. Prognostic factors in pediatric pulmonary arterial hypertension: a systematic review and meta-analysis. Int J Cardiol. 2015; 184: 198–207.
  607. Ivy DD, Rosenzweig EB, Lemarié JC, et al. Long-term outcomes in children with pulmonary arterial hypertension treated with bosentan in real-world clinical settings. Am J Cardiol. 2010; 106(9): 1332–1338.
  608. Zijlstra WMH, Douwes JM, Rosenzweig EB, et al. Survival differences in pediatric pulmonary arterial hypertension: clues to a better understanding of outcome and optimal treatment strategies. J Am Coll Cardiol. 2014; 63(20): 2159–2169.
  609. Ploegstra MJ, Douwes JM, Roofthooft MTR, et al. Identification of treatment goals in paediatric pulmonary arterial hypertension. Eur Respir J. 2014; 44(6): 1616–1626.
  610. Singh Y, Lakshminrusimha S. Pathophysiology and management of persistent pulmonary hypertension of the newborn. Clin Perinatol. 2021; 48(3): 595–618.
  611. Arjaans S, Haarman MG, Roofthooft MTR, et al. Fate of pulmonary hypertension associated with bronchopulmonary dysplasia beyond 36 weeks postmenstrual age. Arch Dis Child Fetal Neonatal Ed. 2021; 106(1): 45–50.
  612. Goss KN, Beshish AG, Barton GP, et al. Early pulmonary vascular disease in young adults born preterm. Am J Respir Crit Care Med. 2018; 198(12): 1549–1558.
  613. Barst RJ, Beghetti M, Pulido T, et al. STARTS-2 Investigators. STARTS-2: long-term survival with oral sildenafil monotherapy in treatment-naive pediatric pulmonary arterial hypertension. Circulation. 2014; 129(19): 1914–1923.
  614. Barst RJ, Ivy DD, Gaitan G, et al. A randomized, double-blind, placebo-controlled, dose-ranging study of oral sildenafil citrate in treatment-naive children with pulmonary arterial hypertension. Circulation. 2012; 125(2): 324–334.
  615. Ivy D, Bonnet D, Berger RMF, et al. LVHV Study Group. Efficacy and safety of tadalafil in a pediatric population with pulmonary arterial hypertension: phase 3 randomized, double-blind placebo-controlled study. Pulm Circ. 2021; 11(3): 20458940211024955.
  616. Small D, Ferguson-Sells L, Dahdah N, et al. Pharmacokinetics and safety of tadalafil in a paediatric population with pulmonary arterial hypertension: A multiple ascending-dose study. Br J Clin Pharmacol. 2019; 85(10): 2302–2309.
  617. Barst RJ, Ivy D, Dingemanse J, et al. Pharmacokinetics, safety, and efficacy of bosentan in pediatric patients with pulmonary arterial hypertension. Clin Pharmacol Ther. 2003; 73(4): 372–382.
  618. Beghetti M, Haworth SG, Bonnet D, et al. Pharmacokinetic and clinical profile of a novel formulation of bosentan in children with pulmonary arterial hypertension: the FUTURE-1 study. Br J Clin Pharmacol. 2009; 68(6): 948–955.
  619. Berger RMF, Haworth SG, Bonnet D, et al. FUTURE-2: Results from an open-label, long-term safety and tolerability extension study using the pediatric FormUlation of bosenTan in pUlmonary arterial hypeRtEnsion. Int J Cardiol. 2016; 202: 52–58.
  620. Berger RMF, Gehin M, Beghetti M, et al. FUTURE-3 investigators. A bosentan pharmacokinetic study to investigate dosing regimens in paediatric patients with pulmonary arterial hypertension: FUTURE-3. Br J Clin Pharmacol. 2017; 83(8): 1734–1744.
  621. Ivy D, Beghetti M, Juaneda-Simian E, et al. A randomized study of safety and efficacy of two doses of ambrisentan to treat pulmonary arterial hypertension in pediatric patients aged 8 years up to 18 years. J Pediatr: X. 2020.
  622. Takatsuki S, Rosenzweig EB, Zuckerman W, et al. Clinical safety, pharmacokinetics, and efficacy of ambrisentan therapy in children with pulmonary arterial hypertension. Pediatr Pulmonol. 2013; 48(1): 27–34.
  623. Barst RJ, Maislin G, Fishman AP. Vasodilator therapy for primary pulmonary hypertension in children. Circulation. 1999; 99(9): 1197–1208.
  624. Hopper RK, Wang Y, DeMatteo V, et al. Right ventricular function mirrors clinical improvement with use of prostacyclin analogues in pediatric pulmonary hypertension. Pulm Circ. 2018; 8(2): 2045894018759247.
  625. Lammers AE, Hislop AA, Flynn Y, et al. Epoprostenol treatment in children with severe pulmonary hypertension. Heart. 2007; 93(6): 739–743.
  626. Douwes JM, Zijlstra WMH, Rosenzweig EB, et al. Parenteral prostanoids in pediatric pulmonary arterial hypertension: start early, dose high, combine. Ann Am Thorac Soc. 2022; 19(2): 227–237.
  627. Tella JB, Kulik TJ, McSweeney JE, et al. Prostanoids in pediatric pulmonary hypertension: clinical response, time-to-effect, and dose-response. Pulm Circ. 2020; 10(4): 2045894020944858.
  628. Krishnan U, Feinstein JA, Adatia I, et al. Pediatric Pulmonary Hypertension Network (PPHNet). Evaluation and management of pulmonary hypertension in children with bronchopulmonary dysplasia. J Pediatr. 2017; 188: 24–34.e1.
  629. Vayalthrikkovil S, Vorhies E, Stritzke A, et al. Prospective study of pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2019; 54(2): 171–178.
  630. Abman S, Collaco J, Shepherd E, et al. Interdisciplinary care of children with severe bronchopulmonary dysplasia. J Pediatr. 2017; 181: 12–28.e1.
  631. Bermejo J, González-Mansilla A, Mombiela T, et al. SIOVAC (“Sildenafil for Improving Outcomes after VAlvular Correction”) Investigators. Persistent pulmonary hypertension in corrected valvular heart disease: hemodynamic insights and long-term survival. J Am Heart Assoc. 2021; 10(2): e019949.
  632. Caravita S, Dewachter C, Soranna D, et al. Haemodynamics to predict outcome in pulmonary hypertension due to left heart disease: a meta-analysis. Eur Respir J. 2018; 51(4): 1702427.
  633. Crawford TC, Leary PJ, Fraser 3rd CD, et al. Impact of the new pulmonary hypertension definition on heart transplant outcomes: expanding the hemodynamic risk profile. Chest. 2020; 157(1): 151–161.
  634. O'Sullivan CJ, Wenaweser P, Ceylan O, et al. Effect of pulmonary hypertension hemodynamic presentation on clinical outcomes in patients with severe symptomatic aortic valve stenosis undergoing transcatheter aortic valve implantation: insights from the new proposed pulmonary hypertension classification. Circ Cardiovasc Interv. 2015; 8(7): e002358.
  635. Vanderpool RR, Saul M, Nouraie M, et al. Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol. 2018; 3(4): 298–306.
  636. Murali S, Kormos RL, Uretsky BF, et al. Preoperative pulmonary hemodynamics and early mortality after orthotopic cardiac transplantation: the Pittsburgh experience. Am Heart J. 1993; 126(4): 896–904.
  637. Zimpfer D, Zrunek P, Roethy W, et al. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg. 2007; 133(3): 689–695.
  638. Al-Naamani N, Preston IR, Paulus JK, et al. Pulmonary arterial capacitance is an important predictor of mortality in heart failure with a preserved ejection fraction. JACC Heart Fail. 2015; 3(6): 467–474.
  639. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013; 1(4): 290–299.
  640. Leung CC, Moondra V, Catherwood E, et al. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol. 2010; 106(2): 284–286.
  641. Shah AM, Shah SJ, Anand IS, et al. TOPCAT Investigators. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail. 2014; 7(1): 104–115.
  642. Ghio S, Gavazzi A, Campana C, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001; 37(1): 183–188.
  643. Tampakakis E, Leary PJ, Selby VN, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015; 3(1): 9–16.
  644. Naeije R, Gerges M, Vachiery JL, et al. Hemodynamic phenotyping of pulmonary hypertension in left heart failure. Circ Heart Fail. 2017; 10(9): e004082.
  645. Guazzi M, Naeije R. Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol. 2017; 69(13): 1718–1734.
  646. Zlotnick DM, Ouellette ML, Malenka DJ, et al. Northern New England Cardiovascular Disease Study Group. Effect of preoperative pulmonary hypertension on outcomes in patients with severe aortic stenosis following surgical aortic valve replacement. Am J Cardiol. 2013; 112(10): 1635–1640.
  647. Melby SJ, Moon MR, Lindman BR, et al. Impact of pulmonary hypertension on outcomes after aortic valve replacement for aortic valve stenosis. J Thorac Cardiovasc Surg. 2011; 141(6): 1424–1430.
  648. Luçon A, Oger E, Bedossa M, et al. Prognostic implications of pulmonary hypertension in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation: study from the FRANCE 2 Registry. Circ Cardiovasc Interv. 2014; 7(2): 240–247.
  649. Faggiano P, Antonini-Canterin F, Ribichini F, et al. Pulmonary artery hypertension in adult patients with symptomatic valvular aortic stenosis. Am J Cardiol. 2000; 85(2): 204–208.
  650. Zuern CS, Eick C, Rizas K, et al. Prognostic value of mild-to-moderate pulmonary hypertension in patients with severe aortic valve stenosis undergoing aortic valve replacement. Clin Res Cardiol. 2012; 101(2): 81–88.
  651. Roques F, Nashef SA, Michel P, et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. European Journal of Cardio-Thoracic Surgery. 1999; 15(6): 816–823.
  652. Chandrashekhar Y, Westaby S, Narula J. Mitral stenosis. The Lancet. 2009; 374(9697): 1271–1283.
  653. Dreyfus GD, Martin RP, Chan KM, et al. Functional tricuspid regurgitation: a need to revise our understanding. J Am Coll Cardiol. 2015; 65(21): 2331–2336.
  654. Muraru D, Parati G, Badano L. The importance and the challenges of Predicting the progression of functional tricuspid regurgitation. JACC Cardiovasc Imaging. 2020; 13(8): 1652–1654.
  655. Andersen MJ, Hwang SJ, Kane GC, et al. Enhanced pulmonary vasodilator reserve and abnormal right ventricular: pulmonary artery coupling in heart failure with preserved ejection fraction. Circ Heart Fail. 2015; 8(3): 542–550.
  656. Tedford RJ, Hassoun PM, Mathai SC, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012; 125(2): 289–297.
  657. Bosch L, Lam CSP, Gong L, et al. Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail. 2017; 19(12): 1664–1671.
  658. Obokata M, Reddy YNV, Melenovsky V, et al. Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J. 2019; 40(8): 689–697.
  659. D'Alto M, Romeo E, Argiento P, et al. Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr. 2015; 28(1): 108–115.
  660. D'Alto M, Romeo E, Argiento P, et al. A simple echocardiographic score for the diagnosis of pulmonary vascular disease in heart failure. J Cardiovasc Med (Hagerstown). 2017; 18(4): 237–243.
  661. Hoeper MM, Lam CSP, Vachiery JL, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a plea for proper phenotyping and further research. Eur Heart J. 2017; 38(38): 2869–2873.
  662. Churchill TW, Li SX, Curreri L, et al. Evaluation of 2 existing diagnostic scores for heart failure with preserved ejection fraction against a comprehensively phenotyped cohort. Circulation. 2021; 143(3): 289–291.
  663. Reddy YNV, Carter RE, Obokata M, et al. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018; 138(9): 861–870.
  664. Andersen MJ, Ersbøll M, Bro-Jeppesen J, et al. Exercise hemodynamics in patients with and without diastolic dysfunction and preserved ejection fraction after myocardial infarction. Circ Heart Fail. 2012; 5(4): 444–451.
  665. Andersen MJ, Olson TP, Melenovsky V, et al. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure. Circ Heart Fail. 2015; 8(1): 41–48.
  666. Borlaug BA, Nishimura RA, Sorajja P, et al. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010; 3(5): 588–595.
  667. Fujimoto N, Borlaug BA, Lewis GD, et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013; 127(1): 55–62.
  668. Ho JE, Zern EK, Wooster L, et al. Differential clinical profiles, exercise responses, and outcomes associated with existing hfpef definitions. Circulation. 2019; 140(5): 353–365.
  669. Baratto C, Caravita S, Soranna D, et al. Current limitations of invasive exercise hemodynamics for the diagnosis of heart failure with preserved ejection fraction. Circ Heart Fail. 2021; 14(5): e007555.
  670. Fox BD, Shimony A, Langleben D, et al. High prevalence of occult left heart disease in scleroderma-pulmonary hypertension. Eur Respir J. 2013; 42(4): 1083–1091.
  671. Lewis GD, Bossone E, Naeije R, et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation. 2013; 128(13): 1470–1479.
  672. Maor E, Grossman Y, Balmor RG, et al. Exercise haemodynamics may unmask the diagnosis of diastolic dysfunction among patients with pulmonary hypertension. Eur J Heart Fail. 2015; 17(2): 151–158.
  673. Robbins IM, Hemnes AR, Pugh ME, et al. High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail. 2014; 7(1): 116–122.
  674. Borlaug BA. Invasive assessment of pulmonary hypertension: time for a more fluid approach? Circ Heart Fail. 2014; 7(1): 2–4.
  675. Selim AM, Wadhwani L, Burdorf A, et al. Left ventricular assist devices in pulmonary hypertension group 2 with significantly elevated pulmonary vascular resistance: a bridge to cure. Heart Lung Circ. 2019; 28(6): 946–952.
  676. Al-Kindi SG, Farhoud M, Zacharias M, et al. Left ventricular assist devices or inotropes for decreasing pulmonary vascular resistance in patients with pulmonary hypertension listed for heart transplantation. J Card Fail. 2017; 23(3): 209–215.
  677. Imamura T, Chung B, Nguyen A, et al. Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail. 2017; 10(9): e003882.
  678. Kaluski E, Cotter G, Leitman M, et al. Clinical and hemodynamic effects of bosentan dose optimization in symptomatic heart failure patients with severe systolic dysfunction, associated with secondary pulmonary hypertension--a multi-center randomized study. Cardiology. 2008; 109(4): 273–280.
  679. Lewis GD, Shah R, Shahzad K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007; 116(14): 1555–1562.
  680. Dumitrescu D, Seck C, Möhle L, et al. Therapeutic potential of sildenafil in patients with heart failure and reactive pulmonary hypertension. Int J Cardiol. 2012; 154(2): 205–206.
  681. Wu X, Yang Te, Zhou Qi, et al. Additional use of a phosphodiesterase 5 inhibitor in patients with pulmonary hypertension secondary to chronic systolic heart failure: a meta-analysis. Eur J Heart Fail. 2014; 16(4): 444–453.
  682. Anker S, Butler J, Filippatos G, et al. EMPEROR-Preserved Trial Investigators. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021; 385(16): 1451–1461.
  683. Koller B, Steringer-Mascherbauer R, Ebner CH, et al. Pilot Study of Endothelin Receptor Blockade in Heart Failure with Diastolic Dysfunction and Pulmonary Hypertension (BADDHY-Trial). Heart Lung Circ. 2017; 26(5): 433–441.
  684. Vachiéry JL, Delcroix M, Al-Hiti H, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J. 2018; 51(2): 1701886.
  685. Hoendermis ES, Liu LCY, Hummel YM, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. 2015; 36(38): 2565–2573.
  686. Guazzi M, Vicenzi M, Arena R, et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011; 124(2): 164–174.
  687. Kramer T, Dumitrescu D, Gerhardt F, et al. Therapeutic potential of phosphodiesterase type 5 inhibitors in heart failure with preserved ejection fraction and combined post- and pre-capillary pulmonary hypertension. Int J Cardiol. 2019; 283: 152–158.
  688. Obokata M, Reddy YNV, Shah SJ, et al. Effects of interatrial shunt on pulmonary vascular function in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2019; 74(21): 2539–2550.
  689. Shah SJ, Borlaug BA, Chung ES, et al. REDUCE LAP-HF II investigators. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial. Lancet. 2022; 399(10330): 1130–1140.
  690. Borlaug BA, Blair J, Bergmann MW, et al. REDUCE LAP-HF-II Investigators. Latent pulmonary vascular disease may alter the response to therapeutic atrial shunt device in heart failure. Circulation. 2022; 145(21): 1592–1604.
  691. Abraham WT, Stevenson LW, Bourge RC, et al. CHAMPION Trial Study Group. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016; 387(10017): 453–461.
  692. Angermann CE, Assmus B, Anker SD, et al. MEMS-HF Investigators. Pulmonary artery pressure-guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European Monitoring Study for Heart Failure (MEMS-HF). Eur J Heart Fail. 2020; 22(10): 1891–1901.
  693. Shavelle DM, Desai AS, Abraham WT, et al. CardioMEMS Post-Approval Study Investigators. Lower rates of heart failure and all-cause hospitalizations during pulmonary artery pressure-guided therapy for ambulatory heart failure: one-year outcomes from the cardioMEMS post-approval study. Circ Heart Fail. 2020; 13(8): e006863.
  694. Lindenfeld J, Zile MR, Desai AS, et al. Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial. Lancet. 2021; 398(10304): 991–1001.
  695. Nassif ME, Qintar M, Windsor SL, et al. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: results from the EMBRACE-HF trial. Circulation. 2021; 143(17): 1673–1686.
  696. Tran JS, Havakuk O, McLeod JM, et al. Acute pulmonary pressure change after transition to sacubitril/valsartan in patients with heart failure reduced ejection fraction. ESC Heart Fail. 2021; 8(2): 1706–1710.
  697. Vardeny O, Claggett B, Kachadourian J, et al. Reduced loop diuretic use in patients taking sacubitril/valsartan compared with enalapril: the PARADIGM-HF trial. Eur J Heart Fail. 2019; 21(3): 337–341.
  698. Wachter R, Fonseca AF, Balas B, et al. Real-world treatment patterns of sacubitril/valsartan: a longitudinal cohort study in Germany. Eur J Heart Fail. 2019; 21(5): 588–597.
  699. Gaemperli O, Moccetti M, Surder D, et al. Acute haemodynamic changes after percutaneous mitral valve repair: relation to mid-term outcomes. Heart. 2012; 98(2): 126–132.
  700. Tigges E, Blankenberg S, von Bardeleben RS, et al. Implication of pulmonary hypertension in patients undergoing MitraClip therapy: results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail. 2018; 20(3): 585–594.
  701. Bermejo J, Yotti R, García-Orta R, et al. Sildenafil for Improving Outcomes after VAlvular Correction (SIOVAC) investigators. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J. 2018; 39(15): 1255–1264.
  702. Chorin E, Rozenbaum Z, Topilsky Y, et al. Tricuspid regurgitation and long-term clinical outcomes. Eur Heart J Cardiovasc Imaging. 2020; 21(2): 157–165.
  703. Topilsky Y, Nkomo VT, Vatury O, et al. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014; 7(12): 1185–1194.
  704. Lurz P, Orban M, Besler C, et al. Clinical characteristics, diagnosis, and risk stratification of pulmonary hypertension in severe tricuspid regurgitation and implications for transcatheter tricuspid valve repair. Eur Heart J. 2020; 41(29): 2785–2795.
  705. Brener MI, Lurz P, Hausleiter J, et al. Right ventricular-pulmonary arterial coupling and afterload reserve in patients undergoing transcatheter tricuspid valve repair. J Am Coll Cardiol. 2022; 79(5): 448–461.
  706. Cao JY, Wales KM, Cordina R, et al. Pulmonary vasodilator therapies are of no benefit in pulmonary hypertension due to left heart disease: A meta-analysis. Int J Cardiol. 2018; 273: 213–220.
  707. Kessler R, Faller M, Weitzenblum E, et al. "Natural history" of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am J Respir Crit Care Med. 2001; 164(2): 219–224.
  708. Oswald-Mammosser M, Weitzenblum E, Quoix E, et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Chest. 1995; 107(5): 1193–1198.
  709. Thurnheer R, Ulrich S, Bloch KE. Precapillary pulmonary hypertension and sleep-disordered breathing: is there a link? Respiration. 2017; 93(1): 65–77.
  710. León-Velarde F, Maggiorini M, Reeves JT, et al. Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol. 2005; 6(2): 147–157.
  711. Freitas CSG, Baldi BG, Jardim C, et al. Pulmonary hypertension in lymphangioleiomyomatosis: prevalence, severity and the role of carbon monoxide diffusion capacity as a screening method. Orphanet J Rare Dis. 2017; 12(1): 74.
  712. Zeder K, Avian A, Bachmaier G, et al. Elevated pulmonary vascular resistance predicts mortality in COPD patients. Eur Respir J. 2021; 58(2): 2100944.
  713. Olsson KM, Hoeper MM, Pausch C, et al. Pulmonary vascular resistance predicts mortality in patients with pulmonary hypertension associated with interstitial lung disease: results from the COMPERA registry. Eur Respir J. 2021; 58(2): 2101483.
  714. Chaouat A, Bugnet AS, Kadaoui N, et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005; 172(2): 189–194.
  715. Lettieri CJ, Nathan SD, Barnett SD, et al. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest. 2006; 129(3): 746–752.
  716. Medrek SK, Sharafkhaneh A, Spiegelman AM, et al. Admission for COPD exacerbation is associated with the clinical diagnosis of pulmonary hypertension: results from a Retrospective Longitudinal Study of a Veteran Population. COPD. 2017; 14(5): 484–489.
  717. Kessler R, Faller M, Fourgaut G, et al. Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999; 159(1): 158–164.
  718. Vizza C, Hoeper M, Huscher D, et al. Pulmonary hypertension in patients with COPD: Results from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Chest. 2021; 160(2): 678–689.
  719. Dauriat G, Reynaud-Gaubert M, Cottin V, et al. Severe pulmonary hypertension associated with chronic obstructive pulmonary disease: a prospective French multicenter cohort. J Heart Lung Transplant. 2021; 40(9): 1009–1018.
  720. Kovacs G, Agusti A, Barberà J, et al. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Is there a pulmonary vascular phenotype? Am J Respir Crit Care Med. 2018; 198(8): 1000–1011.
  721. Andersen KH, Iversen M, Kjaergaard J, et al. Prevalence, predictors, and survival in pulmonary hypertension related to end-stage chronic obstructive pulmonary disease. J Heart Lung Transplant. 2012; 31(4): 373–380.
  722. Thabut G, Dauriat G, Stern JB, et al. Pulmonary hemodynamics in advanced COPD candidates for lung volume reduction surgery or lung transplantation. Chest. 2005; 127(5): 1531–1536.
  723. Carlsen J, Hasseriis Andersen K, Boesgaard S, et al. Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease. J Heart Lung Transplant. 2013; 32(3): 347–354.
  724. Bunel V, Guyard A, Dauriat G, et al. Pulmonary arterial histologic lesions in patients with COPD with severe pulmonary hypertension. Chest. 2019; 156(1): 33–44.
  725. Kovacs G, Avian A, Douschan P, et al. Patients with pulmonary arterial hypertension less represented in clinical trials - who are they and how are they? Am J Respir Crit Care Med. 2016; 193: A3979.
  726. Torres-Castro R, Gimeno-Santos E, Vilaró J, et al. Effect of pulmonary hypertension on exercise tolerance in patients with COPD: a prognostic systematic review and meta-analysis. Eur Respir Rev. 2021; 30(160): 200321.
  727. Nathan SD, Shlobin OA, Barnett SD, et al. Right ventricular systolic pressure by echocardiography as a predictor of pulmonary hypertension in idiopathic pulmonary fibrosis. Respir Med. 2008; 102(9): 1305–1310.
  728. Bax S, Bredy C, Kempny A, et al. A stepwise composite echocardiographic score predicts severe pulmonary hypertension in patients with interstitial lung disease. ERJ Open Res. 2018; 4(2): 00124–2017.
  729. Bax S, Jacob J, Ahmed R, et al. Right ventricular to left ventricular ratio at CT pulmonary angiogram predicts mortality in interstitial lung disease. Chest. 2020; 157(1): 89–98.
  730. Chin M, Johns C, Currie BJ, et al. Pulmonary artery size in interstitial lung disease and pulmonary hypertension: association with interstitial lung disease severity and diagnostic utility. Front Cardiovasc Med. 2018; 5: 53.
  731. Kiely DG, Levin D, Hassoun P, et al. EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ. 2019 [Epub ahead of print]; 9(3): 2045894019841990.
  732. Johns CS, Rajaram S, Capener DA, et al. Non-invasive methods for estimating mPAP in COPD using cardiovascular magnetic resonance imaging. Eur Radiol. 2018; 28(4): 1438–1448.
  733. Pynnaert C, Lamotte M, Naeije R. Aerobic exercise capacity in COPD patients with and without pulmonary hypertension. Respir Med. 2010; 104(1): 121–126.
  734. Waxman A, Restrepo-Jaramillo R, Thenappan T, et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med. 2021; 384(4): 325–334.
  735. Kovacs G, Avian A, Pienn M, et al. Reading pulmonary vascular pressure tracings. How to handle the problems of zero leveling and respiratory swings. Am J Respir Crit Care Med. 2014; 190(3): 252–257.
  736. Blanco I, Santos S, Gea J, et al. Sildenafil to improve respiratory rehabilitation outcomes in COPD: a controlled trial. Eur Respir J. 2013; 42(4): 982–992.
  737. Ghofrani HA, Wiedemann R, Rose F, et al. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet. 2002; 360(9337): 895–900.
  738. Olschewski H, Ghofrani HA, Walmrath D, et al. Inhaled prostacyclin and iloprost in severe pulmonary hypertension secondary to lung fibrosis. Am J Respir Crit Care Med. 1999; 160(2): 600–607.
  739. Stolz D, Rasch H, Linka A, et al. A randomised, controlled trial of bosentan in severe COPD. Eur Respir J. 2008; 32(3): 619–628.
  740. Raghu G, Behr J, Brown KK, et al. ARTEMIS-IPF Investigators*. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013; 158(9): 641–649.
  741. Goudie AR, Lipworth BJ, Hopkinson PJ, et al. Tadalafil in patients with chronic obstructive pulmonary disease: a randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir Med. 2014; 2(4): 293–300.
  742. Lederer DJ, Bartels MN, Schluger NW, et al. Sildenafil for chronic obstructive pulmonary disease: a randomized crossover trial. COPD. 2012; 9(3): 268–275.
  743. Vitulo P, Stanziola A, Confalonieri M, et al. Sildenafil in severe pulmonary hypertension associated with chronic obstructive pulmonary disease: A randomized controlled multicenter clinical trial. J Heart Lung Transplant. 2017; 36(2): 166–174.
  744. King Jr T, Behr J, Brown K, et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2008; 177(1): 75–81.
  745. King Jr TE, Brown KK, Raghu G, et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011; 184(1): 92–99.
  746. Zisman DA, Schwarz M, Anstrom KJ, et al. Idiopathic Pulmonary Fibrosis Clinical Research Network. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010; 363(7): 620–628.
  747. Kolb M, Raghu G, Wells A, et al. Nintedanib plus sildenafil in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2018; 379(18): 1722–1731.
  748. Corte TJ, Keir GJ, Dimopoulos K, et al. BPHIT Study Group. Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia. Am J Respir Crit Care Med. 2014; 190(2): 208–217.
  749. Han MK, Bach DS, Hagan PG, et al. IPFnet Investigators. Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction. Chest. 2013; 143(6): 1699–1708.
  750. Raghu G, Nathan SD, Behr J, et al. Pulmonary hypertension in idiopathic pulmonary fibrosis with mild-to-moderate restriction. Eur Respir J. 2015; 46(5): 1370–1377.
  751. Nathan SD, Tapson VF, Elwing J, et al. Efficacy of inhaled treprostinil on multiple disease progression events in patients with pulmonary hypertension due to parenchymal lung disease in the INCREASE trial. Am J Respir Crit Care Med. 2022; 205(2): 198–207.
  752. Gall H, Felix JF, Schneck FK, et al. The Giessen pulmonary hypertension registry: survival in pulmonary hypertension subgroups. J Heart Lung Transplant. 2017; 36(9): 957–967.
  753. Hoeper MM, Behr J, Held M, et al. Pulmonary hypertension in patients with chronic fibrosing idiopathic interstitial pneumonias. PLoS One. 2015; 10(12): e0141911.
  754. Klok FA, Delcroix M, Bogaard HJ. Chronic thromboembolic pulmonary hypertension from the perspective of patients with pulmonary embolism. J Thromb Haemost. 2018; 16(6): 1040–1051.
  755. Klok FA, Dzikowska-Diduch O, Kostrubiec M, et al. Derivation of a clinical prediction score for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J Thromb Haemost. 2016; 14(1): 121–128.
  756. Bonderman D, Wilkens H, Wakounig S, et al. Risk factors for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2009; 33(2): 325–331.
  757. Narechania S, Renapurkar R, Heresi GA. Mimickers of chronic thromboembolic pulmonary hypertension on imaging tests: a review. Pulm Circ. 2020; 10(1): 2045894019882620.
  758. Xi XY, Gao W, Gong JN, et al. Value of (18)F-FDG PET/CT in differentiating malignancy of pulmonary artery from pulmonary thromboembolism: a cohort study and literature review. Int J Cardiovasc Imaging. 2019; 35(7): 1395–1403.
  759. Lasch F, Karch A, Koch A, et al. Comparison of MRI and VQ-SPECT as a screening test for patients with suspected CTEPH: CHANGE-MRI study design and rationale. Front Cardiovasc Med. 2020; 7: 51.
  760. Nagel C, Prange F, Guth S, et al. Exercise training improves exercise capacity and quality of life in patients with inoperable or residual chronic thromboembolic pulmonary hypertension. PLoS One. 2012; 7(7): e41603.
  761. Nagel C, Nasereddin M, Benjamin N, et al. Supervised exercise training in patients with chronic thromboembolic pulmonary hypertension as early follow-up treatment after pulmonary endarterectomy: a prospective cohort study. Respiration. 2020; 99(7): 577–588.
  762. Bunclark K, Newnham M, Chiu YD, et al. A multicenter study of anticoagulation in operable chronic thromboembolic pulmonary hypertension. J Thromb Haemost. 2020; 18(1): 114–122.
  763. Humbert M, Simonneau G, Pittrow D, et al. Oral anticoagulants (NOAC and VKA) in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2022; 41(6): 716–721.
  764. Ordi-Ros J, Sáez-Comet L, Pérez-Conesa M, et al. Rivaroxaban versus vitamin K antagonist in antiphospholipid syndrome: a randomized noninferiority trial. Ann Intern Med. 2019; 171(10): 685–694.
  765. Pengo V, Denas G, Zoppellaro G, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018; 132(13): 1365–1371.
  766. Hsieh WC, Jansa P, Huang WC, et al. Residual pulmonary hypertension after pulmonary endarterectomy: a meta-analysis. J Thorac Cardiovasc Surg. 2018; 156(3): 1275–1287.
  767. Madani MM, Auger WR, Pretorius V, et al. Pulmonary endarterectomy: recent changes in a single institution's experience of more than 2,700 patients. Ann Thorac Surg. 2012; 94(1): 97–103; discussion 103.
  768. Lankeit M, Krieg V, Hobohm L, et al. Pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2018 [Epub ahead of print]; 37(2): 250–258.
  769. Delcroix M, Lang I, Pepke-Zaba J, et al. Long-term outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. Circulation. 2016; 133(9): 859–871.
  770. Newnham M, Bunclark K, Abraham N, et al. CAMPHOR score: patient-reported outcomes are improved by pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2020; 56(4): 1902096.
  771. Vuylsteke A, Sharples L, Charman G, et al. Circulatory arrest versus cerebral perfusion during pulmonary endarterectomy surgery (PEACOG): a randomised controlled trial. Lancet. 2011; 378(9800): 1379–1387.
  772. D'Armini AM, Morsolini M, Mattiucci G, et al. Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension. J Thorac Cardiovasc Surg. 2014; 148(3): 1005–1012.e2.
  773. Quadery SR, Swift AJ, Billings CG, et al. The impact of patient choice on survival in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2018; 52(3): 1800589.
  774. Taboada D, Pepke-Zaba J, Jenkins DP, et al. Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur Respir J. 2014; 44(6): 1635–1645.
  775. Ghofrani HA, D'Armini A, Grimminger F, et al. CHEST-1 Study Group. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013; 369(4): 319–329.
  776. Sadushi-Kolici R, Jansa P, Kopec G, et al. Subcutaneous treprostinil for the treatment of severe non-operable chronic thromboembolic pulmonary hypertension (CTREPH): a double-blind, phase 3, randomised controlled trial. Lancet Respir Med. 2019; 7(3): 239–248.
  777. Ghofrani HA, Simonneau G, D'Armini AM, et al. MERIT study investigators. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir Med. 2017; 5(10): 785–794.
  778. Jaïs X, D'Armini AM, Jansa P, et al. Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension Study Group. Bosentan for treatment of inoperable chronic thromboembolic pulmonary hypertension: BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a randomized, placebo-controlled trial. J Am Coll Cardiol. 2008; 52(25): 2127–2134.
  779. Reichenberger F, Voswinckel R, Enke B, et al. Long-term treatment with sildenafil in chronic thromboembolic pulmonary hypertension. Eur Respir J. 2007; 30(5): 922–927.
  780. Guth S, D'Armini AM, Delcroix M, et al. Current strategies for managing chronic thromboembolic pulmonary hypertension: results of the worldwide prospective CTEPH Registry. ERJ Open Res. 2021; 7(3): 00850–2020.
  781. Brenot P, Jaïs X, Taniguchi Yu, et al. French experience of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019; 53(5): 1802095.
  782. Darocha S, Pietura R, Pietrasik A, et al. Improvement in quality of life and hemodynamics in chronic thromboembolic pulmonary hypertension treated with balloon pulmonary angioplasty. Circ J. 2017; 81(4): 552–557.
  783. Fukui S, Ogo T, Morita Y, et al. Right ventricular reverse remodelling after balloon pulmonary angioplasty. Eur Respir J. 2014; 43(5): 1394–1402.
  784. Kataoka M, Inami T, Hayashida K, et al. Percutaneous transluminal pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2012; 5(6): 756–762.
  785. Kriechbaum SD, Wiedenroth CB, Peters K, et al. Galectin-3, GDF-15, and sST2 for the assessment of disease severity and therapy response in patients suffering from inoperable chronic thromboembolic pulmonary hypertension. Biomarkers. 2020; 25(7): 578–586.
  786. Kriechbaum SD, Scherwitz L, Wiedenroth CB, et al. Mid-regional pro-atrial natriuretic peptide and copeptin as indicators of disease severity and therapy response in CTEPH. ERJ Open Res. 2020; 6(4): 00356–2020.
  787. Lang I, Meyer BC, Ogo T, et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017; 26(143): 160119.
  788. Mahmud E, Behnamfar O, Ang L, et al. Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Interv Cardiol Clin. 2018; 7(1): 103–117.
  789. Mizoguchi H, Ogawa A, Munemasa M, et al. Refined balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2012; 5(6): 748–755.
  790. Ogawa A, Matsubara H. After the dawn ― balloon pulmonary angioplasty for patients with chronic thromboembolic pulmonary hypertension ―. Circ J. 2018; 82(5): 1222–1230.
  791. Olsson KM, Wiedenroth CB, Kamp JC, et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Respir J. 2017; 49(6): 1602409.
  792. Roller FC, Kriechbaum S, Breithecker A, et al. Correlation of native T1 mapping with right ventricular function and pulmonary haemodynamics in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. Eur Radiol. 2019; 29(3): 1565–1573.
  793. Sugimura K, Fukumoto Y, Satoh K, et al. Percutaneous transluminal pulmonary angioplasty markedly improves pulmonary hemodynamics and long-term prognosis in patients with chronic thromboembolic pulmonary hypertension. Circ J. 2012; 76(2): 485–488.
  794. Ogawa A, Satoh T, Fukuda T, et al. Balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension: results of a multicenter registry. Circ Cardiovasc Qual Outcomes. 2017; 10(11): e004029.
  795. Inami T, Kataoka M, Yanagisawa R, et al. Long-term outcomes after percutaneous transluminal pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Circulation. 2016; 134(24): 2030–2032.
  796. Ejiri K, Ogawa A, Fujii S, et al. Vascular injury is a major cause of lung injury after balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2018; 11(12): e005884.
  797. Shimokawahara H, Ogawa A, Mizoguchi H, et al. Vessel stretching is a cause of lumen enlargement immediately after balloon pulmonary angioplasty: intravascular ultrasound analysis in patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2018; 11(4): e006010.
  798. Jaïs X, Brenot P, Bouvaist H, et al. Balloon pulmonary angioplasty versus riociguat for the treatment of inoperable chronic thromboembolic pulmonary hypertension (RACE): a multicentre, phase 3, open-label, randomised controlled trial and ancillary follow-up study. Lancet Respir Med. 2022; 10(10): 961–971.
  799. Wiedenroth CB, Olsson KM, Guth S, et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic disease. Pulm Circ. 2018; 8(1): 2045893217753122.
  800. Romanov A, Cherniavskiy A, Novikova N, et al. Pulmonary artery denervation for patients with residual pulmonary hypertension after pulmonary endarterectomy. J Am Coll Cardiol. 2020; 76(8): 916–926.
  801. Bresser P, Fedullo PF, Auger WR, et al. Continuous intravenous epoprostenol for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2004; 23(4): 595–600.
  802. Nagaya N, Sasaki N, Ando M, et al. Prostacyclin therapy before pulmonary thromboendarterectomy in patients with chronic thromboembolic pulmonary hypertension. Chest. 2003; 123(2): 338–343.
  803. Reesink HJ, Surie S, Kloek JJ, et al. Bosentan as a bridge to pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension. J Thorac Cardiovasc Surg. 2010; 139(1): 85–91.
  804. Araszkiewicz A, Darocha S, Pietrasik A, et al. Balloon pulmonary angioplasty for the treatment of residual or recurrent pulmonary hypertension after pulmonary endarterectomy. Int J Cardiol. 2019; 278: 232–237.
  805. Shimura N, Kataoka M, Inami T, et al. Additional percutaneous transluminal pulmonary angioplasty for residual or recurrent pulmonary hypertension after pulmonary endarterectomy. Int J Cardiol. 2015; 183: 138–142.
  806. Cannon JE, Su Li, Kiely DG, et al. Dynamic risk stratification of patient long-term outcome after pulmonary endarterectomy: results from the united kingdom national cohort. Circulation. 2016; 133(18): 1761–1771.
  807. Wiedenroth CB, Liebetrau C, Breithecker A, et al. Combined pulmonary endarterectomy and balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. 2016; 35(5): 591–596.
  808. Delcroix M, Staehler G, Gall H, et al. Risk assessment in medically treated chronic thromboembolic pulmonary hypertension patients. Eur Respir J. 2018; 52(5): 1800248.
  809. Benza RL, Farber HW, Frost A, et al. REVEAL risk score in patients with chronic thromboembolic pulmonary hypertension receiving riociguat. J Heart Lung Transplant. 2018; 37(7): 836–843.
  810. Mayer E, Jenkins D, Lindner J, et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry. J Thorac Cardiovasc Surg. 2011; 141(3): 702–710.
  811. Andreassen AK, Ragnarsson A, Gude E, et al. Balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Heart. 2013; 99(19): 1415–1420.
  812. Wiedenroth CB, Ghofrani HA, Adameit MSD, et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulm Circ. 2018; 8(3): 2045894018783996.
  813. Mehari A, Gladwin MT, Tian X, et al. Mortality in adults with sickle cell disease and pulmonary hypertension. JAMA. 2012; 307(12): 1254–1256.
  814. Savale L, Habibi A, Lionnet F, et al. Clinical phenotypes and outcomes of precapillary pulmonary hypertension of sickle cell disease. European Respiratory Journal. 2019; 54(6): 1900585.
  815. Machado RF, Barst RJ, Yovetich NA, et al. walk-PHaSST Investigators and Patients. Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood. 2011; 118(4): 855–864.
  816. Turpin M, Chantalat-Auger C, Parent F, et al. Chronic blood exchange transfusions in the management of pre-capillary pulmonary hypertension complicating sickle cell disease. Eur Respir J. 2018; 52(4): 1800272.
  817. Gladwin M, Sachdev V, Jison M, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N Engl J Med. 2004; 350(9): 886–895.
  818. Derchi G, Galanello R, Bina P, et al. Webthal Pulmonary Arterial Hypertension Group*. Prevalence and risk factors for pulmonary arterial hypertension in a large group of β-thalassemia patients using right heart catheterization: a Webthal study. Circulation. 2014; 129(3): 338–345.
  819. Jaïs X, Ioos V, Jardim C, et al. Splenectomy and chronic thromboembolic pulmonary hypertension. Thorax. 2005; 60(12): 1031–1034.
  820. Adir Y, Humbert M. Pulmonary hypertension in patients with chronic myeloproliferative disorders. Eur Respir J. 2010; 35(6): 1396–1406.
  821. Takanashi S, Akiyama M, Suzuki K, et al. IgG4-related fibrosing mediastinitis diagnosed with computed tomography-guided percutaneous needle biopsy: Two case reports and a review of the literature. Medicine (Baltimore). 2018; 97(22): e10935.
  822. Montani D, Achouh L, Marcelin AG, et al. Reversibility of pulmonary arterial hypertension in HIV/HHV8-associated Castleman's disease. Eur Respir J. 2005; 26(5): 969–972.
  823. Jouve P, Humbert M, Chauveheid MP, et al. POEMS syndrome-related pulmonary hypertension is steroid-responsive. Respir Med. 2007; 101(2): 353–355.
  824. Savale L, Huitema M, Shlobin O, et al. WASOG statement on the diagnosis and management of sarcoidosis-associated pulmonary hypertension. Eur Respir Rev. 2022; 31(163): 210165.
  825. Bandyopadhyay D, Humbert M. An update on sarcoidosis-associated pulmonary hypertension. Curr Opin Pulm Med. 2020; 26(5): 582–590.
  826. Baughman RP, Shlobin OA, Gupta R, et al. Riociguat for sarcoidosis-associated pulmonary hypertension: results of a 1-year double-blind, placebo-controlled trial. Chest. 2022; 161(2): 448–457.
  827. Le Pavec J, Lorillon G, Jaïs X, et al. Pulmonary Langerhans cell histiocytosis-associated pulmonary hypertension: clinical characteristics and impact of pulmonary arterial hypertension therapies. Chest. 2012; 142(5): 1150–1157.
  828. Jutant EM, Jaïs X, Girerd B, et al. Phenotype and outcomes of pulmonary hypertension associated with neurofibromatosis type 1. Am J Respir Crit Care Med. 2020; 202(6): 843–852.
  829. Oliveros E, Vaidya A. Metabolic disorders of pulmonary hypertension. Adv Pulm Hypertens. 2021; 20(2): 35–39.
  830. Humbert M, Labrune P, Simonneau G. Severe pulmonary arterial hypertension in type 1 glycogen storage disease. Eur J Pediatr. 2002; 161 Suppl 1: S93–S96.
  831. Kawar B, Ellam T, Jackson C, et al. Pulmonary hypertension in renal disease: epidemiology, potential mechanisms and implications. Am J Nephrol. 2013; 37(3): 281–290.
  832. Edmonston DL, Parikh KS, Rajagopal S, et al. Pulmonary hypertension subtypes and mortality in CKD. Am J Kidney Dis. 2020; 75(5): 713–724.
  833. Pabst S, Hammerstingl C, Hundt F, et al. Pulmonary hypertension in patients with chronic kidney disease on dialysis and without dialysis: results of the PEPPER-study. PLoS One. 2012; 7(4): e35310.
  834. Price LC, Seckl MJ, Dorfmüller P, et al. Tumoral pulmonary hypertension. Eur Respir Rev. 2019; 28(151): 180065.
  835. Seferian A, Steriade A, Jaïs X, et al. Pulmonary hypertension complicating fibrosing mediastinitis. Medicine (Baltimore). 2015; 94(44): e1800.
  836. Baughman RP, Culver DA, Cordova FC, et al. Bosentan for sarcoidosis-associated pulmonary hypertension: a double-blind placebo controlled randomized trial. Chest. 2014; 145(4): 810–817.
  837. Humbert MG, Galié N, Meszaros G. Competency requirements for ERN-lung PH centres. https://ern-lung.eu/inhalt/wp-content/uploads/2020/10/PH-MCC.pdf (22.07.2022).
  838. Doyle-Cox C, Nicholson G, Stewart T, et al. Current organization of specialist pulmonary hypertension clinics: results of an international survey. Pulm Circ. 2019; 9(2): 2045894019855611.
  839. Saunders H, Helgeson SA, Abdelrahim A, et al. Comparing diagnosis and treatment of pulmonary hypertension patients at a pulmonary hypertension center versus community centers. Diseases. 2022; 10(1): 5.
  840. European Reference Network. Clinical Patient Management System (CPMS). https://ern-euro-nmd.eu/clinical-patient-management-system/ (22.07.2022).
  841. ERS. Continuing Professional Development - Pulmonary Vascular Diseases. https://www.ersnet.org/wp-content/uploads/2021/02/Continuing-professional-development-Pulmonary-Vascular-Diseases.pdf (22.07.2022).
  842. Tanner FC, Brooks N, Fox KF, et al. ESC Scientific Document Group. ESC core curriculum for the cardiologist. Eur Heart J. 2020; 41(38): 3605–3692.
  843. Crespo-Leiro MG, Metra M, Lund LH, et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018; 20(11): 1505–1535.
  844. Google Maps. ERN-LUNG reference centres. https://www.google.com/maps/d/viewer?mid=1VVJW2YWYN1q6NYMWPdk78nltgTOptt4C&ll=50.878853000000014%2C4.6743529999999955&z=8 (22.07.2022).
  845. Giri PC, Stevens GJ, Merrill-Henry J, et al. Participation in pulmonary hypertension support group improves patient-reported health quality outcomes: a patient and caregiver survey. Pulm Circ. 2021; 11(2): 20458940211013258.
  846. Biganzoli L, Cardoso F, Beishon M, et al. The requirements of a specialist breast centre. Breast. 2020; 51: 65–84.
  847. Aktaa S, Batra G, Wallentin L, et al. European Society of Cardiology methodology for the development of quality indicators for the quantification of cardiovascular care and outcomes. Eur Heart J Qual Care Clin Outcomes. 2022; 8(1): 4–13.
  848. Minchin M, Roland M, Richardson J, et al. Quality of Care in the United Kingdom after removal of financial incentives. N Engl J Med. 2018; 379(10): 948–957.
  849. Song Z, Ji Y, Safran DG, et al. Health care spending, utilization, and quality 8 years into global payment. N Engl J Med. 2019; 381(3): 252–263.
  850. Arbelo E, Aktaa S, Bollmann A, et al. (Chair), (Co-chair), Reviewers, (review coordinator). Quality indicators for the care and outcomes of adults with atrial fibrillation. Europace. 2021; 23(4): 494–495.
  851. Schiele F, Aktaa S, Rossello X, et al. ESC Scientific Document Group. 2020 Update of the quality indicators for acute myocardial infarction: a position paper of the Association for Acute Cardiovascular Care: the study group for quality indicators from the ACVC and the NSTE-ACS guideline group. Eur Heart J Acute Cardiovasc Care. 2021; 10(2): 224–233.
  852. Aktaa S, Abdin A, Arbelo E, et al. European Society of Cardiology Quality Indicators for the care and outcomes of cardiac pacing: developed by the Working Group for Cardiac Pacing Quality Indicators in collaboration with the European Heart Rhythm Association of the European Society of Cardiology. Europace. 2022; 24(1): 165–172.
  853. Glikson M, Nielsen JC, Kronborg MB, et al. ESC Scientific Document Group. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021; 42(35): 3427–3520.
  854. Collet JP, Thiele H, Barbato E, et al. ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021; 42(14): 1289–1367.
  855. Batra G, Aktaa S, Wallentin L, et al. Methodology for the development of international clinical data standards for common cardiovascular conditions: European Unified Registries for Heart Care Evaluation and Randomised Trials (EuroHeart). Eur Heart J Qual Care Clin Outcomes. 2021 [Epub ahead of print]: qcab052.