Vol 83, No 2 (2025)
Review paper
Published online: 2025-01-02

open access

Page views 938
Article views/downloads 730
Get Citation

Connect on Social Media

Connect on Social Media

Advancing treatments for transthyretin amyloid cardiomyopathy: Innovations in RNA silencing, gene editing, TTR stabilization, and degradation

Daria M Keller12, Ewa Straburzyńska-Migaj1, Maciej Lesiak1
Pubmed: 39775625
Pol Heart J 2025;83(2):121-137.

Abstract

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive and challenging disease characterized by deposition of misfolded transthyretin (TTR) protein in the myocardial interstitium. Until recently, treatment options for ATTR-CM were limited, with tafamidis emerging as the primary therapeutic agent targeting the stabilization of TTR tetramers to prevent amyloid fibril formation. However, advancements in understanding the underlying mechanisms of ATTR-CM have led to developing novel therapeutic strategies to address various aspects of the disease process. This review explores current therapeutic options for treating ATTR-CM. It encompasses strategies ranging from inhibiting TTR synthesis using RNA silencing methods, such as small interfering RNA (siRNA; e.g., the HELIOS-B trial with vutrisiran), antisense oligonucleotides (ASO; e.g., the CARDIO-TTRansform trial with eplontersen), and gene-editing technologies such as CRISPR/Cas9 (e.g., the MAGNITUDE trial with NTLA-2001). Additionally, it explores TTR stabilization approaches beyond tafamidis, such as next-generation acoramidis, which showed success in the ATTRibute-CM trial. It also examines therapies promoting TTR degradation and removal, which includes the use of monoclonal antibodies (e.g., DepleTTR-CM with ALXN2220) and other compounds, such as doxycycline or epigallocatechin-3-gallate (a green tea component), which, despite long-standing recognition, remain underexplored. Novel approaches, such as seeding inhibitors and molecular tweezers, which aim to inhibit TTR fibril formation, are also discussed as potential future management strategies. The review further highlights the role of ongoing clinical trials in evaluating the efficacy and safety of these innovative therapies, emphasizing their potential to expand treatment options and improve outcomes for patients with ATTR-CM. Advancements in supportive therapies are also discussed to offer a comprehensive overview of the evolving therapeutic landscape.

Article available in PDF format

View PDF Download PDF file

References

  1. Kittleson MM, Ruberg FL, Ambardekar AV, et al. 2023 ACC expert consensus decision pathway on comprehensive multidisciplinary care for the patient with cardiac amyloidosis: A report of the American College of Cardiology solution set oversight committee. J Am Coll Cardiol. 2023; 81(11): 1076–1126.
  2. Gentile L, Coelho T, Dispenzieri A, et al. A 15-year consolidated overview of data in over 6000 patients from the Transthyretin Amyloidosis Outcomes Survey (THAOS). Orphanet J Rare Dis. 2023; 18(1): 350.
  3. Damy T, Kristen AV, Suhr OB, et al. THAOS Investigators. Transthyretin cardiac amyloidosis in continental Western Europe: an insight through the Transthyretin Amyloidosis Outcomes Survey (THAOS). Eur Heart J. 2022; 43(5): 391–400.
  4. Ruberg FL, Maurer MS. Cardiac amyloidosis due to transthyretin protein: A review. JAMA. 2024; 331(9): 778–791.
  5. Gawor M, Holcman K, Franaszczyk M, et al. Spectrum of transthyretin gene mutations and clinical characteristics of Polish patients with cardiac transthyretin amyloidosis. Cardiol J. 2022; 29(6): 985–993.
  6. Gawor-Prokopczyk M, Lipowska M, Truszkowska G, et al. Rare transthyretin gene variants (p.Ala45Thr, p.Val91Ala, p.Phe53Cys, p.Ala101Val, p.Glu109Lys, and p.Phe53Leu): diagnostic pitfalls and clinical characteristics of Polish patients with transthyretin cardiac amyloidosis. Pol Arch Intern Med. 2024; 134(11).
  7. Murat S, Cavusoglu Y, Yalvac HE, et al. Assessment of clinical characteristics of cardiac amyloidosis as a potential underlying etiology in patients diagnosed with heart failure with preserved ejection fraction. Kardiol Pol. 2022; 80(6): 672–678.
  8. Grogan M, Scott CG, Kyle RA, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol. 2016; 68(10): 1014–1020.
  9. Gillmore JD, Damy T, Fontana M, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J. 2018; 39(30): 2799–2806.
  10. Lane T, Fontana M, Martinez-Naharro A, et al. Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis. Circulation. 2019; 140(1): 16–26.
  11. Grzybowski J, Podolec P, Holcman K, et al. Diagnosis and treatment of transthyretin amyloidosis cardiomyopathy: A position statement of the Polish Cardiac Society. Kardiol Pol. 2023; 81(11): 1167–1185.
  12. Ioannou A, Cappelli F, Emdin M, et al. Stratifying disease progression in patients with cardiac ATTR amyloidosis. J Am Coll Cardiol. 2024 [Epub ahead of print]; 83(14): 1276–1291.
  13. Ioannou A. Evolution of disease-modifying therapy for transthyretin cardiac amyloidosis. Heart Int. 2024; 18(1): 30–37.
  14. Marcoux J, Mangione PP, Porcari R, et al. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med. 2015; 7(10): 1337–1349.
  15. Verona G, Raimondi S, Canetti D, et al. Degradation versus fibrillogenesis, two alternative pathways modulated by seeds and glycosaminoglycans. Protein Sci. 2024; 33(3): e4931.
  16. Cardoso I, Goldsbury CS, Müller SA, et al. Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils. J Mol Biol. 2002; 317(5): 683–695.
  17. Bezerra F, Saraiva MJ, Almeida MR. Modulation of the mechanisms driving transthyretin amyloidosis. Front Mol Neurosci. 2020; 13: 592644.
  18. Wu D, Chen W. Molecular mechanisms and emerging therapies in wild-type transthyretin amyloid cardiomyopathy. Heart Fail Rev. 2024; 29(2): 511–521.
  19. Friedrich M, Aigner A. Therapeutic siRNA: State-of-the-Art and future perspectives. BioDrugs. 2022; 36(5): 549–571.
  20. Dhuri K, Bechtold C, Quijano E, et al. Antisense oligonucleotides: An emerging area in drug discovery and development. J Clin Med. 2020; 9(6): 2004.
  21. Karaki S, Paris C, Rocchi P. Antisense oligonucleotides, a novel developing targeting therapy. In: Sharad S, Kapur S, (ed). Antisense Therapy, IntechOpen; 2019. https://doi.org/10.5772/intechopen.82105.
  22. Chen D, Tang JX, Li B, et al. CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnol. 2018; 18(1): 60.
  23. Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021; 15: 353–361.
  24. Aimo A, Castiglione V, Rapezzi C, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol. 2022; 19(10): 655–667.
  25. Holmgren G, Steen L, Ekstedt J, et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet. 1991; 40(3): 242–246.
  26. Zhang X, Goel V, Attarwala H, et al. Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. J Clin Pharmacol. 2020; 60(1): 37–49.
  27. Planté-Bordeneuve V, Perrain V. Vutrisiran: A new drug in the treatment landscape of hereditary transthyretin amyloid polyneuropathy. Expert Opin Drug Discov. 2024; 19(4): 393–402.
  28. Fontana M, Berk JL, Gillmore JD, et al. Vutrisiran in patients with transthyretin amyloidosis with cardiomyopathy. N Engl J Med. 2024 [Epub ahead of print].
  29. Sutherland JE, Hettinger JL, Chan A, et al. Nonclinical safety profile of revusiran, a 1st-generation GalNAc-siRNA conjugate for treatment of hereditary transthyretin-mediated amyloidosis. Nucleic Acid Ther. 2020; 30(1): 33–49.
  30. Judge DP, Kristen AV, Grogan M, et al. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc Drugs Ther. 2020; 34(3): 357–370.
  31. Maurer MS, Kale P, Fontana M, et al. Patisiran treatment in patients with transthyretin cardiac amyloidosis. N Engl J Med. 2023; 389(17): 1553–1565.
  32. Dasgupta NR, Rissing SM, Smith J, et al. Inotersen therapy of transthyretin amyloid cardiomyopathy. Amyloid. 2020; 27(1): 52–58.
  33. Warner AL. Advances in the treatment of transthyretin cardiac amyloidosis: Current and emerging therapies. Pharmacotherapy. 2021; 41(12): 1081–1091.
  34. Maurer M, Kristen A, Benson M, et al. Evaluation of the efficacy and safety of ionis-TTR-LRXin patients with transthyretin-mediated amyloid cardiomyopathy: the cardio-ttransform study. Can J Cardiol. 2021; 37(10): S69.
  35. Kotit S. Lessons from the first-in-human in vivo CRISPR/Cas9 editing of the TTR gene by NTLA-2001 trial in patients with transthyretin amyloidosis with cardiomyopathy. Glob Cardiol Sci Pract. 2023; 2023(1): e202304.
  36. Fontana M, Solomon SD, Kachadourian J, et al. CRISPR-Cas9 gene editing with nexiguran ziclumeran for ATTR cardiomyopathy. N Engl J Med. 2024; 391(23): 2231–2241.
  37. Miller M, Pal A, Albusairi W, et al. Enthalpy-driven stabilization of transthyretin by AG10 mimics a naturally occurring genetic variant that protects from transthyretin amyloidosis. J Med Chem. 2018; 61(17): 7862–7876.
  38. Wixner J, Westermark P, Ihse E, et al. The Swedish open-label diflunisal trial (DFNS01) on hereditary transthyretin amyloidosis and the impact of amyloid fibril composition. Amyloid. 2019; 26(Suppl 1): 39–40.
  39. Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018; 379(11): 1007–1016.
  40. Damy T, Garcia-Pavia P, Hanna M, et al. Efficacy and safety of tafamidis doses in the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT) and long-term extension study. Eur J Heart Fail. 2021; 23(2): 277–285.
  41. Elliott P, Drachman BM, Gottlieb SS, et al. Long-Term survival with tafamidis in patients with transthyretin amyloid cardiomyopathy. Circ Heart Fail. 2022; 15(1): e008193.
  42. Garcia-Pavia P, Kristen AV, Drachman B, et al. Survival in a real-world cohort of patients with transthyretin amyloid cardiomyopathy treated with tafamidis: an analysis from the Transthyretin Amyloidosis Outcomes Survey (THAOS). J Card Fail. 2024 [Epub ahead of print].
  43. Garcia-Pavia P, Sultan MB, Gundapaneni B, et al. Tafamidis efficacy among octogenarian patients in the phase 3 ATTR-ACT and ongoing long-term extension study. JACC Heart Fail. 2024; 12(1): 150–160.
  44. Bampatsias D, Wardhere A, Zeldin L, et al. Abstract 4143171: pattern of disease progression in ATTR-CM patients treated with tafamidis: An observational study. Circulation. 2024; 150(Suppl 1).
  45. Ney S, Gertz RJ, Pennig L, et al. Multiparametric monitoring of disease progression in contemporary patients with wild-type transthyretin amyloid cardiomyopathy initiating tafamidis treatment. J Clin Med. 2024; 13(1): 284.
  46. Wu F, Zhu He, Zhang Y. Analysis of post-market adverse events of tafamidis base on the FDA adverse event reporting system. Sci Rep. 2024; 14(1): 13691.
  47. Kazi DS, Bellows BK, Spertus JA, et al. Cost-Effectiveness of tafamidis therapy for transthyretin amyloid cardiomyopathy. Circulation. 2020; 141(15): 1214–1224.
  48. Gillmore JD, Judge DP, Cappelli F, et al. Efficacy and safety of acoramidis in transthyretin amyloid cardiomyopathy. N Engl J Med. 2024; 390(2): 132–142.
  49. Green NS, Foss TR, Kelly JW. Genistein, a natural product from soy, is a potent inhibitor of transthyretin amyloidosis. Proc Natl Acad Sci U S A. 2005; 102(41): 14545–14550.
  50. Lohrmann G, Pipilas A, Mussinelli R, et al. Stabilization of cardiac function with diflunisal in transthyretin (ATTR) cardiac amyloidosis. J Card Fail. 2020; 26(9): 753–759.
  51. Elliott P, Gundapaneni B, Sultan MB, et al. Improved long-term survival with tafamidis treatment in patients with transthyretin amyloid cardiomyopathy and severe heart failure symptoms. Eur J Heart Fail. 2023; 25(11): 2060–2064.
  52. Gamez J, Salvadó M, Reig N, et al. Transthyretin stabilization activity of the catechol--methyltransferase inhibitor tolcapone (SOM0226) in hereditary ATTR amyloidosis patients and asymptomatic carriers: proof-of-concept study. Amyloid. 2019; 26(2): 74–84.
  53. Corazza A, Verona G, Waudby CA, et al. Binding of monovalent and bivalent ligands by transthyretin causes different short- and long-distance conformational changes. J Med Chem. 2019; 62(17): 8274–8283.
  54. Garcia-Pavia P, Rapezzi C, Adler Y, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2021; 42(16): 1554–1568.
  55. Cardoso I, Martins D, Ribeiro T, et al. Synergy of combined doxycycline/TUDCA treatment in lowering transthyretin deposition and associated biomarkers: Studies in FAP mouse models. J Transl Med. 2010; 8: 74.
  56. Wixner J, Pilebro B, Lundgren HE, et al. Effect of doxycycline and ursodeoxycholic acid on transthyretin amyloidosis. Amyloid. 2017; 24(Suppl 1): 78–79.
  57. Ferreira N, Saraiva MJ, Almeida MR. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett. 2011; 585(15): 2424–2430.
  58. Aus Dem Siepen F, Bauer R, Aurich M, et al. Green tea extract as a treatment for patients with wild-type transthyretin amyloidosis: An observational study. Drug Des Devel Ther. 2015; 9: 6319–6325.
  59. Obici L, Cortese A, Lozza A, et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid. 2012; 19(Suppl 1): 34–36.
  60. Nuvolone M, Nevone A, Merlini G. Targeting amyloid fibrils by passive immunotherapy in systemic amyloidosis. BioDrugs. 2022; 36(5): 591–608.
  61. Meer PV, Lairez O, Donal E, et al. Long-term safety and efficacy of antibody ALXN2220 for depletion of cardiac amyloid transthyretin: Results of treatment beyond 12 months in the open-label extension of study NI006-101. Eur Heart J. 2024; 45(Suppl 1): ehae666.1095.
  62. Fontana M, Buchholtz K, Engelmann M, et al. NNC6019–0001, a humanized monoclonal antibody, in patients with transthyretin amyloid cardiomyopathy (ATTR-CM): rationale and study design of a phase 2, randomized, placebo-controlled trial. Eur Heart J. 2022; 43(Suppl 2): ehac544.1767.
  63. Garcia-Pavia P, Aus Dem Siepen F, Donal E, et al. Phase 1 trial of antibody NI006 for depletion of cardiac transthyretin amyloid. N Engl J Med. 2023; 389(3): 239–250.
  64. Ferreira N, Gonçalves NP, Saraiva MJ, et al. Curcumin: A multi-target disease-modifying agent for late-stage transthyretin amyloidosis. Sci Rep. 2016; 6: 26623.
  65. Wall JS, Selvarajah S, Foster JS, et al. Characterization of AT-02, a pan-amyloid-binding peptide fusion immunoglobulin with high binding potency, complement activation, and immune cell stimulation. Eur Heart J. 2023; 44(Suppl 2): ehad655.3300.
  66. Wall J, Klein M, Guthrie S, et al. The peptide fusion immunoglobulin, AT-02, exhibits highly potent pan-amyloid reactivity and immunomodulation. J Card Fail. 2024; 30(1): 210.
  67. Morfino P, Aimo A, Panichella G, et al. Amyloid seeding as a disease mechanism and treatment target in transthyretin cardiac amyloidosis. Heart Fail Rev. 2022; 27(6): 2187–2200.
  68. Saelices L, Nguyen BA, Chung K, et al. A pair of peptides inhibits seeding of the hormone transporter transthyretin into amyloid fibrils. J Biol Chem. 2019; 294(15): 6130–6141.
  69. Saelices L, Pokrzywa M, Pawelek K, et al. Assessment of the effects of transthyretin peptide inhibitors in Drosophila models of neuropathic ATTR. Neurobiol Dis. 2018; 120: 118–125.
  70. Sinha S, Lopes DHJ, Du Z, et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J Am Chem Soc. 2011; 133(42): 16958–16969.
  71. Ferreira N, Pereira-Henriques A, Attar A, et al. Molecular tweezers targeting transthyretin amyloidosis. Neurotherapeutics. 2014; 11(2): 450–461.
  72. Girard AA, Sperry BW. Contextualizing the results of HELIOS-B in the broader landscape of clinical trials for the treatment of transthyretin cardiac amyloidosis. Heart Fail Rev. 2025; 30(1): 69–73.