Online first
Original article
Published online: 2024-06-13

open access

Page views 206
Article views/downloads 169
Get Citation

Connect on Social Media

Connect on Social Media

Comprehensive assessment of Cardiovascular-Kidney-Metabolic (CKM) syndrome: Novel tools for assessment of cardiovascular risk and kidney outcomes in long-term kidney transplant patients

Krzysztof Batko1, Anna Sączek2, Małgorzata Banaszkiewicz2, Jolanta Małyszko3, Ewa Koc-Żórawska4, Marcin Żórawski56, Karolina Niezabitowska2, Katarzyna Siek2, Alina Bętkowska-Prokop2, Jacek A Małyszko7, Marcin Krzanowski2, Katarzyna Krzanowska2

Abstract

Not available

Article available in PDF format

View PDF Download PDF file

References

  1. Peralta CA, Shlipak MG, Judd S, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA. 2011; 305(15): 1545–1552.
  2. Feng X, Hou N, Chen Z, et al. Secular trends of epidemiologic patterns of chronic kidney disease over three decades: an updated analysis of the Global Burden of Disease Study 2019. BMJ Open. 2023; 13(3): e064540.
  3. Małyszko J, Bachorzewska-Gajewska H, Tomaszuk-Kazberuk A, et al. Cardiovascular disease and kidney transplantation‑evaluation of potential transplant recipient. Pol Arch Med Wewn. 2014; 124(11): 608–616.
  4. Devine PA, Courtney AE, Maxwell AP. Cardiovascular risk in renal transplant recipients. J Nephrol. 2019; 32(3): 389–399.
  5. Nano J, Schöttker B, Lin JS, et al. Novel biomarkers of inflammation, kidney function and chronic kidney disease in the general population. Nephrol Dial Transplant. 2022; 37(10): 1916–1926.
  6. Ndumele CE, Rangaswami J, Chow SL, et al. American Heart Association. Cardiovascular-Kidney-Metabolic health: a presidential advisory from the american heart association. Circulation. 2023; 148(20): 1606–1635.
  7. Jung YuJ, Lee JE, Lee AeS, et al. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun. 2012; 419(2): 206–210.
  8. Kim DH, Jung YuJ, Lee JE, et al. SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol Renal Physiol. 2011; 301(2): F427–F435.
  9. Hosoda R, Nakashima R, Yano M, et al. Resveratrol, a SIRT1 activator, attenuates aging-associated alterations in skeletal muscle and heart in mice. J Pharmacol Sci. 2023; 152(2): 112–122.
  10. Gu C, Xing Y, Jiang Li, et al. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance. PLoS One. 2013; 8(9): e74050.
  11. Vachharajani VT, Liu T, Wang X, et al. Sirtuins link inflammation and metabolism. J Immunol Res. 2016; 2016.
  12. Lu CL, Liao MT, Hou YC, et al. Sirtuin-1 and Its Relevance in Vascular Calcification. Int J Mol Sci. 2020; 21(5): 1593.
  13. He W, Wang Y, Zhang MZ, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest. 2010; 120(4): 1056–1068.
  14. Kida Y, Zullo JA, Goligorsky MS. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation. Biochem Biophys Res Commun. 2016; 478(3): 1074–1079.
  15. Huang XZ, Wen D, Zhang M, et al. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. J Cell Biochem. 2014; 115(5): 996–1005.
  16. Zhao L, Leung LL, Morser J. Chemerin forms: their generation and activity. Biomedicines. 2022; 10(8): 2018.
  17. Mariani F, Roncucci L. Chemerin/chemR23 axis in inflammation onset and resolution. Inflamm Res. 2015; 64(2): 85–95.
  18. Behnoush AH, Shobeiri P, Bahiraie P, et al. Chemerin levels in chronic kidney disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023; 14.
  19. Mocker A, Hilgers KF, Cordasic N, et al. Renal chemerin expression is induced in models of hypertensive nephropathy and glomerulonephritis and correlates with markers of inflammation and fibrosis. Int J Mol Sci. 2019; 20(24): 6240.
  20. Lin S, Teng J, Li J, et al. Association of chemerin and vascular endothelial growth factor (VEGF) with diabetic nephropathy. Med Sci Monit. 2016; 22: 3209–3214.
  21. Ferland DJ, Mullick AE, Watts SW. Chemerin as a driver of hypertension: a consideration. Am J Hypertens. 2020; 33(11): 975–986.
  22. Bekcer GJ, Wheeler DC, Zeeuw DD, et al. Kidney disease: Improving global outcomes (KDIGO) blood pressure work group. KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney International Supplements. 2012; 2(5): 337–414.
  23. Mach F, Baigent C, Catapano AL, et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1): 111–188.
  24. Pattaro C, Riegler P, Stifter G, et al. Estimating the glomerular filtration rate in the general population using different equations: effects on classification and association. Nephron Clin Pract. 2013; 123(1-2): 102–111.
  25. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021; 99(3S): S1–S87.
  26. SCORE2-Diabetes Working Group and the ESC Cardiovascular Risk Collaboration, SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021; 42(25): 2439–2454.
  27. Rangaswami J, Mathew RO, Parasuraman R, et al. Cardiovascular disease in the kidney transplant recipient: epidemiology, diagnosis and management strategies. Nephrol Dial Transplant. 2019; 34(5): 760–773.
  28. Aziz F, Jorgenson M, Garg N, et al. New approaches to cardiovascular disease and its management in kidney transplant recipients. Transplantation. 2022; 106(6): 1143–1158.
  29. Zbroch E, Bazyluk A, Malyszko J, et al. The serum concentration of anti-aging proteins, sirtuin1 and αKlotho in patients with end-stage kidney disease on maintenance hemodialysis. Clin Interv Aging. 2020; 15: 387–393.
  30. Łukawska-Tatarczuk M, Franek E, Czupryniak L, et al. Sirtuin 1, Visfatin and IL-27 Serum Levels of Type 1 Diabetic Females in Relation to Cardiovascular Parameters and Autoimmune Thyroid Disease. Biomolecules. 2021; 11(8): 1110.
  31. Yue XG, Yang ZG, Zhang Y, et al. Correlations between SIRT1 gene polymorphisms and diabetic kidney disease. R Soc Open Sci. 2018; 5(6): 171871.
  32. Kedenko L, Lamina C, Kedenko I, et al. Genetic polymorphisms at SIRT1 and FOXO1 are associated with carotid atherosclerosis in the SAPHIR cohort. BMC Med Genet. 2014; 15: 112.
  33. Bielach-Bazyluk A, Zbroch E, Czajkowska K, et al. Serum sirtuin 1 is independently associated with intact PTH among patients with chronic kidney disease. Clin Interv Aging. 2021; 16: 525–536.
  34. Krekora J, Matuszewska-Brycht O, Sołek J, et al. Sirtuin 1 and Sirtuin 2 Plasma Concentrations in Patients with Ascending Aortic Dissection and Ascending Aortic Aneurysm. Artery Res. 2023; 29(3): 79–82.
  35. Esmayel IM, Hussein S, Gohar EA, et al. Plasma levels of sirtuin-1 in patients with cerebrovascular stroke. Neurol Sci. 2021; 42(9): 3843–3850.
  36. Doulamis IP, Tzani AI, Konstantopoulos PS, et al. A sirtuin 1/MMP2 prognostic index for myocardial infarction in patients with advanced coronary artery disease. Int J Cardiol. 2017; 230: 447–453.
  37. Shao Y, Ren H, Lv C, et al. Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine. 2017; 55(1): 130–138.
  38. Wang D, Yuan GY, Wang XZ, et al. Plasma chemerin level in metabolic syndrome. Genet Mol Res. 2013; 12(4): 5986–5991.
  39. Yoo HJ, Choi HY, Yang SJ, et al. Circulating chemerin level is independently correlated with arterial stiffness. J Atheroscler Thromb. 2012; 19(1): 59–68.
  40. Dong B, Ji W, Zhang Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome. Intern Med. 2011; 50(10): 1093–1097.
  41. Hu W, Feng P. Elevated serum chemerin concentrations are associated with renal dysfunction in type 2 diabetic patients. Diabetes Res Clin Pract. 2011; 91(2): 159–163.
  42. Blaszak J, Szolkiewicz M, Sucajtys-Szulc E, et al. High serum chemerin level in CKD patients is related to kidney function, but not to its adipose tissue overproduction. Ren Fail. 2015; 37(6): 1033–1038.
  43. Rutkowski P, Sledzinski T, Zielinska H, et al. Decrease of serum chemerin concentration in patients with end stage renal disease after successful kidney transplantation. Regul Pept. 2012; 173(1-3): 55–59.
  44. Szramowska A, Bielecki M, Grzeszczyk M, et al. High-sensitivity cardiac troponin T in detecting obstructive coronary artery disease in hemodialysis patients listed for kidney transplantation. Kardiol Pol. 2024; 82(3): 285–291.
  45. Bellasi A, Salera D, Ratti C, et al. Cardiovascular screening in chronic kidney disease subjects waiting for transplantation: Unresolved question. Pol Heart J. 2024; 82(4): 474–476.
  46. Szramowska A, Bielecki M, Grzeszczyk M, et al. High-sensitivity cardiac troponin T in detecting obstructive coronary artery disease in hemodialysis patients listed for kidney transplantation. Pol Heart J. 2024; 82(3): 285–291.
  47. Stompór T, Winiarska A. Kidneys in heart failure: Impact of flozins. Kardiol Pol. 2023; 81(11): 1071–1080.