Online first
Original article
Published online: 2024-06-06

open access

Page views 140
Article views/downloads 86
Get Citation

Connect on Social Media

Connect on Social Media

Growth differentiation factor-15 and routine laboratory parameters are associated with one-year mortality in patients with end-stage heart failure undergoing heart transplantation evaluation

Wioletta Szczurek-Wasilewicz1, Oliwia Warmusz2, Michał Skrzypek3, Andrzej Karmański4, Michał Jurkiewicz2, Piotr Wyrobiec2, Mariusz Gąsior5, Bożena Szyguła-Jurkiewicz5

Abstract

Not available

Article available in PDF format

View PDF Download PDF file

References

  1. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2022; 24(1): 4–131.
  2. Wojtaszczyk A, Gąsior M, Szyguła-Jurkiewicz B, et al. Prevalence of heart rhythm disorders in patients with end-stage heart failure referred to qualification for heart transplantation. Kardiol Pol. 2022; 80(3): 339–341.
  3. Gürgöze MT, van Vark LC, Baart SJ, et al. Multimarker analysis of serially measured GDF-15, NT-proBNP, ST2, GAL-3, cTnI, creatinine, and prognosis in acute heart failure. Circ Heart Fail. 2023; 16(1): e009526.
  4. Paul S, Harshaw-Ellis K. Evolving use of biomarkers in the management of heart failure. Cardiol Rev. 2019; 27(3): 153–159.
  5. Berezin AE, Berezin AA. Biomarkers in heart failure: From research to clinical practice. Ann Lab Med. 2023; 43(3): 225–236.
  6. Rochette L, Dogon G, Zeller M, et al. GDF15 and cardiac cells: Current concepts and new insights. Int J Mol Sci. 2021; 22(16): 8889.
  7. Mazagova M, Buikema H, Landheer SW, et al. Growth differentiation factor 15 impairs aortic contractile and relaxing function through altered caveolar signaling of the endothelium. Am J Physiol Heart Circ Physiol. 2013; 304(5): H709–H718.
  8. Heinze G. WCM: A SAS® macro for weighted parameter estimation for Cox's model. Technical Report 3/2008 (updated 2009.09.24).
  9. Schemper M, Wakounig S, Heinze G. The estimation of average hazard ratios by weighted Cox regression. Stat Med. 2009; 28(19): 2473–2489.
  10. Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010; 122(14): 1387–1395.
  11. Kempf T, Eden M, Strelau J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006; 98(3): 351–360.
  12. Szczygieł JA, Michałek P, Truszkowska G, et al. Clinical features, etiology, and survival in patients with restrictive cardiomyopathy: A single-center experience. Kardiol Pol. 2023; 81(12): 1227–1236.
  13. Xu J, Kimball TR, Lorenz JN, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006; 98(3): 342–350.
  14. Luo JW, Duan WH, Song L, et al. A meta-analysis of growth differentiation factor-15 and prognosis in chronic heart failure. Front Cardiovasc Med. 2021; 8: 630818.
  15. Zeng X, Li L, Wen H, et al. Growth-differentiation factor 15 as a predictor of mortality in patients with heart failure: A meta-analysis. J Cardiovasc Med (Hagerstown). 2017; 18(2): 53–59.
  16. Lok DJ, Klip IT, Lok SI, et al. Incremental prognostic power of novel biomarkers (growth-differentiation factor-15, high-sensitivity C-reactive protein, galectin-3, and high-sensitivity troponin-T) in patients with advanced chronic heart failure. Am J Cardiol. 2013; 112(6): 831–837.
  17. Pellicori P, Zhang J, Cuthbert J, et al. High-sensitivity C-reactive protein in chronic heart failure: patient characteristics, phenotypes, and mode of death. Cardiovasc Res. 2020; 116(1): 91–100.
  18. van de Stolpe A, Jacobs N, Hage W, et al. Fibrinogen binding to ICAM-1 on EA.hy 926 endothelial cells is dependent on an intact cytoskeleton. Thromb Haemost. 2018; 75(01): 182–189.
  19. Murphy SP, Kakkar R, McCarthy CP, et al. Inflammation in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75(11): 1324–1340.
  20. Jungbauer CG, Riedlinger J, Block D, et al. Panel of emerging cardiac biomarkers contributes for prognosis rather than diagnosis in chronic heart failure. Biomark Med. 2014; 8(6): 777–789.
  21. Brasier AR, Recinos A, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol. 2002; 22(8): 1257–1266.
  22. Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid receptor and cardiovascular disease. Am J Hypertens. 2018; 31(11): 1165–1174.
  23. Schneider DJ, Taatjes DJ, Howard DB, et al. Increased reactivity of platelets induced by fibrinogen independent of its binding to the IIb-IIIa surface glycoprotein: a potential contributor to cardiovascular risk. J Am Coll Cardiol. 1999; 33(1): 261–266.
  24. Hicks RC, Golledge J, Mir-Hasseine R, et al. Vasoactive effects of fibrinogen on saphenous vein. Nature. 1996; 379(6568): 818–820.
  25. Szaba FM, Smiley ST. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood. 2002; 99(3): 1053–1059.
  26. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002; 91(11): 988–998.
  27. Kunutsor SK, Kurl S, Zaccardi F, et al. Baseline and long-term fibrinogen levels and risk of sudden cardiac death: A new prospective study and meta-analysis. Atherosclerosis. 2016; 245: 171–180.
  28. Ess M, Mussner-Seeber C, Mariacher S, et al. γ-Glutamyltransferase rather than total bilirubin predicts outcome in chronic heart failure. J Card Fail. 2011; 17(7): 577–584.
  29. Samsky MD, Patel CB, DeWald TA, et al. Cardiohepatic interactions in heart failure: an overview and clinical implications. J Am Coll Cardiol. 2013; 61(24): 2397–2405.
  30. Szczurek W, Gąsior M, Skrzypek M, et al. Factors associated with elevated pulmonary vascular resistance in ambulatory patients with end-stage heart failure accepted for heart transplant. Pol Arch Intern Med. 2020; 130(10): 830–836.
  31. Suzuki K, Claggett B, Minamisawa M, et al. Liver function and prognosis, and influence of sacubitril/valsartan in patients with heart failure with reduced ejection fraction. Eur J Heart Fail. 2020; 22(9): 1662–1671.
  32. Hilscher M, Sanchez W. Congestive hepatopathy. Clin Liver Dis (Hoboken). 2016; 8(3): 68–71.
  33. Lau GT, Tan HC, Kritharides L. Type of liver dysfunction in heart failure and its relation to the severity of tricuspid regurgitation. Am J Cardiol. 2002; 90(12): 1405–1409.
  34. Shinagawa H, Inomata T, Koitabashi T, et al. Prognostic significance of increased serum bilirubin levels coincident with cardiac decompensation in chronic heart failure. Circ J. 2008; 72(3): 364–369.
  35. Senni M, Lopez-Sendon J, Cohen-Solal A, et al. Vericiguat and NT-proBNP in patients with heart failure with reduced ejection fraction: analyses from the VICTORIA trial. ESC Heart Fail. 2022; 9(6): 3791–3803.
  36. Tsutsui H, Albert NM, Coats AJS, et al. Natriuretic peptides: role in the diagnosis and management of heart failure: a scientific statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. Eur J Heart Fail. 2023; 25(5): 616–631.
  37. Brunner-La Rocca HP, Sanders-van Wijk S. Natriuretic peptides in chronic heart failure. Card Fail Rev. 2019; 5(1): 44–49.
  38. Kang SH, Park JJ, Choi DJ, et al. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart. 2015; 101(23): 1881–1888.
  39. Bayes-Genis A, Morant-Talamante N, Lupón J. Neprilysin and natriuretic peptide regulation in heart failure. Curr Heart Fail Rep. 2016; 13(4): 151–157.