Online first
Expert opinion
Published online: 2024-05-02

open access

Page views 204
Article views/downloads 191
Get Citation

Connect on Social Media

Connect on Social Media

Genetic testing for inherited cardiovascular diseases. A position statement of the Polish Cardiac Society endorsed by Polish Society of Human Genetics and Cardiovascular Patient Communities

Elżbieta K Biernacka1, Tadeusz Osadnik234, Zofia T Bilińska5, Maciej Krawczyński6, Anna Latos-Bieleńska6, Izabela Łaczmańska7, Maria Miszczak-Knecht8, Rafał Płoski9, Joanna K Ponińska10, Aleksander Prejbisz11, Paweł Rubiś12, Aleksandra Rudnicka13, Krzysztof Szczałuba914, Justyna A Szczygieł15, Paweł Własienko1617, Agnieszka Wołczenko18, Agnieszka Zienciuk-Krajka19, Lidia Ziółkowska8, Robert Gil20

Abstract

Not available

Article available in PDF format

View PDF Download PDF file

References

  1. Davis CG, Lehrman MA, Russell DW, et al. The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell. 1986; 45(1): 15–24.
  2. Geisterfer-Lowrance AA, Kass S, Tanigawa G, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990; 62(5): 999–1006.
  3. Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991; 352(6333): 337–339.
  4. Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995; 80(5): 795–803.
  5. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998; 392(6673): 293–296.
  6. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999; 341(23): 1715–1724.
  7. McKoy G, Protonotarios N, Crosby A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000; 355(9221): 2119–2124.
  8. ClinGen: https://clinicalgenome. (05.12.2023).
  9. Crotti L, Brugada P, Calkins H, et al. From gene-discovery to gene-tailored clinical management: 25 years of research in channelopathies and cardiomyopathies. Europace. 2023; 25(8).
  10. Loeys BL, Schwarze U, Holm T, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006; 355(8): 788–798.
  11. Schwartz PJ, Crotti L, George AL. Modifier genes for sudden cardiac death. Eur Heart J. 2018; 39(44): 3925–3931.
  12. Wilde AAM, Semsarian C, Márquez MF, et al. Document Reviewers, Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), a branch of the European Society of Cardiology (ESC), the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS).. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace. 2022; 24(8): 1307–1367.
  13. Isselbacher EM, Preventza O, Hamilton Black J, et al. Peer Review Committee Members. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the American Heart Association/American College of Cardiology joint committee on clinical practice guidelines. Circulation. 2022; 146(24): e334–e482.
  14. Wilde AAM, Nannenberg E, van der Werf C. Cardiogenetics, 25 years a growing subspecialism. Neth Heart J. 2020; 28(Suppl 1): 39–43.
  15. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011; 8(8): 1308–1339.
  16. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5): 405–424.
  17. Won D, Kim SeH, Kim B, et al. Reanalysis of genomic sequencing results in a clinical laboratory: advantages and limitations. Front Neurol. 2020; 11: 612.
  18. Masson E, Zou WB, Génin E, et al. Expanding ACMG variant classification guidelines into a general framework. Hum Genomics. 2022; 16(1): 31.
  19. Arbelo E, Protonotarios A, Gimeno JR, et al. ESC Scientific Document Group, ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J. 2023; 44(37): 3503–3626.
  20. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013; 10(9): 531–547.
  21. The diagnostic work-up of genetic and inflammatory dilated cardiomyopathy. https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-13/The-diagnostic-work-up-of-genetic-and-inflammatory-dilated-cardiomyopathy (28.04.2024).
  22. Jordan E, Peterson L, Ai T, et al. Evidence-Based assessment of genes in dilated cardiomyopathy. Circulation. 2021; 144(1): 7–19.
  23. Musunuru K, Hershberger RE, Day SM, et al. American Heart Association Council on Genomic and Precision Medicine; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2020; 13(4): e000067.
  24. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017; 376(1): 61–72.
  25. Corrado D, Basso C, Rizzoli G, et al. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003; 42(11): 1959–1963.
  26. James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62(14): 1290–1297.
  27. Corrado D, Wichter T, Link MS, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Circulation. 2015; 132(5): 441–453.
  28. van Tintelen JP, Entius MM, Bhuiyan ZA, et al. Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2006; 113(13): 1650–1658.
  29. Biernacka EK, Borowiec K, Franaszczyk M, et al. Pathogenic variants in plakophilin-2 gene (PKP2) are associated with better survival in arrhythmogenic right ventricular cardiomyopathy. J Appl Genet. 2021; 62(4): 613–620.
  30. Groeneweg JA, Bhonsale A, James CA, et al. Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ Cardiovasc Genet. 2015; 8(3): 437–446.
  31. James CA, Syrris P, van Tintelen JP, et al. The role of genetics in cardiovascular disease: arrhythmogenic cardiomyopathy. Eur Heart J. 2020; 41(14): 1393–1400.
  32. de Brouwer R, Bosman LP, Gripenstedt S, et al. Netherlands ACM Registry. Value of genetic testing in the diagnosis and risk stratification of arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2022; 19(10): 1659–1665.
  33. Protonotarios A, Bariani R, Cappelletto C, et al. Importance of genotype for risk stratification in arrhythmogenic right ventricular cardiomyopathy using the 2019 ARVC risk calculator. Eur Heart J. 2022; 43(32): 3053–3067.
  34. Pelliccia A, Sharma S, Gati S, et al. ESC Scientific Document Group. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J. 2021; 42(1): 17–96.
  35. Karabinowska-Małocha A, Dziewięcka E, Szymańska M, et al. Link between fibrosis-specific biomarkers and interstitial fibrosis in hypertrophic cardiomyopathy. Kardiol Pol. 2023; 81(7-8): 692–699.
  36. Keramida K, Lazaros G, Nihoyannopoulos P. Right ventricular involvement in hypertrophic cardiomyopathy: patterns and implications. Hellenic J Cardiol. 2020; 61(1): 3–8.
  37. Akhtar M, Elliott P. The genetics of hypertrophic cardiomyopathy. Glob Cardiol Sci Pract. 2018; 2018(3): 36.
  38. Suay-Corredera C, Pricolo MR, Herrero-Galán E, et al. Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy. J Biol Chem. 2021; 297(1).
  39. Walsh R, Buchan R, Wilk A, et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur Heart J. 2017; 38(46): 3461–3468.
  40. Antoniutti G, Caimi-Martinez FG, Álvarez-Rubio J, et al. Genotype-Phenotype correlation in hypertrophic cardiomyopathy: new variant p.Arg652Lys in . Genes (Basel). 2022; 13(2).
  41. Keyt LK, Duran JM, Bui QM, et al. Thin filament cardiomyopathies: a review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med. 2022; 9.
  42. Li Q, Gruner C, Chan RH, et al. Genotype-positive status in patients with hypertrophic cardiomyopathy is associated with higher rates of heart failure events. Circ Cardiovasc Genet. 2014; 7(4): 416–422.
  43. O'Mahony C, Jichi F, Pavlou M, et al. Hypertrophic Cardiomyopathy Outcomes Investigators. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014; 35(30): 2010–2020.
  44. Topriceanu CC, Pereira AC, Moon JC, et al. Meta-Analysis of penetrance and systematic review on transition to disease in genetic hypertrophic cardiomyopathy. Circulation. 2024; 149(2): 107–123.
  45. Rapezzi C, Aimo A, Barison A, et al. Restrictive cardiomyopathy: definition and diagnosis. Eur Heart J. 2022; 43(45): 4679–4693.
  46. Grzybowski J, Podolec P, Holcman K, et al. Diagnosis and treatment of transthyretin amyloidosis cardiomyopathy: a position statement of the polish cardiac society. Kardiol Pol. 2023; 81(11): 1167–1185.
  47. Charron P, Elliott P, Gimeno J, et al. The cardiomyopathy registry of the eurobservational research programme of the european society of cardiology: baseline data and contemporary management of adult patients with cardiomyopathies. European Heart Journal. 2018; 39(20): 1784–1793.
  48. Brodehl A, Gerull B. Genetic insights into primary restrictive cardiomyopathy. J Clin Med. 2022; 11(8).
  49. Schwartz PJ, Moss AJ, Vincent GM, et al. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993; 88(2): 782–784.
  50. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012; 5(4): 868–877.
  51. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013; 10(12): 1932–1963.
  52. Crotti L, Spazzolini C, Tester DJ, et al. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J. 2019; 40(35): 2964–2975.
  53. Mazzanti A, Guz D, Trancuccio A, et al. Natural history and risk stratification in Andersen-Tawil syndrome type 1. J Am Coll Cardiol. 2020; 75(15): 1772–1784.
  54. Pflaumer A, Wilde AAM, Charafeddine F, et al. 50 years of catecholaminergic polymorphic ventricular tachycardia (CPVT) - time to explore the dark side of the moon. Heart Lung Circ. 2020; 29(4): 520–528.
  55. Krahn AD, Behr ER, Hamilton R, et al. Brugada Syndrome. JACC Clin Electrophysiol. 2022; 8(3): 386–405.
  56. Probst V, Wilde AAM, Barc J, et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ Cardiovasc Genet. 2009; 2(6): 552–557.
  57. Baranchuk A, Nguyen T, Ryu MH, et al. Brugada phenocopy: new terminology and proposed classification. Ann Noninvasive Electrocardiol. 2012; 17(4): 299–314.
  58. Wijeyeratne Y, Tanck M, Mizusawa Y, et al. SCN5A Mutation Type and a Genetic Risk Score Associate Variably With Brugada Syndrome Phenotype in SCN5A Families. Circulation: Genomic and Precision Medicine. 2020; 13(6): e002911.
  59. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022; 43(40): 3997–4126.
  60. Mazzanti A, Kanthan A, Monteforte N, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014; 63(13): 1300–1308.
  61. Giustetto C, Scrocco C, Schimpf R, et al. Usefulness of exercise test in the diagnosis of short QT syndrome. Europace. 2015; 17(4): 628–634.
  62. Walsh R, Adler A, Amin AS, et al. Evaluation of gene validity for CPVT and short QT syndrome in sudden arrhythmic death. Eur Heart J. 2022; 43(15): 1500–1510.
  63. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007; 115(4): 442–449.
  64. Harrell DT, Ashihara T, Ishikawa T, et al. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int J Cardiol. 2015; 190: 393–402.
  65. Mazzanti A, Maragna R, Vacanti G, et al. Hydroquinidine prevents life-threatening arrhythmic events in patients with short qt syndrome. J Am Coll Cardiol. 2017; 70(24): 3010–3015.
  66. Poninska JK, Bilinska ZT, Franaszczyk M, et al. Next-generation sequencing for diagnosis of thoracic aortic aneurysms and dissections: diagnostic yield, novel mutations and genotype phenotype correlations. J Transl Med. 2016; 14(1): 115.
  67. Takeda N, Komuro I. Genetic basis of hereditary thoracic aortic aneurysms and dissections. J Cardiol. 2019; 74(2): 136–143.
  68. Rodrigues Bento J, Meester J, Luyckx I, et al. The genetics and typical traits of thoracic aortic aneurysm and dissection. Annu Rev Genomics Hum Genet. 2022; 23: 223–253.
  69. Loeys BL, Dietz HC, Braverman AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010; 47(7): 476–485.
  70. Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005; 37(3): 275–281.
  71. Jondeau G, Ropers J, Regalado E, et al. Montalcino Aortic Consortium. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (montalcino aortic consortium). Circ Cardiovasc Genet. 2016; 9(6): 548–558.
  72. Franken R, Groenink M, de Waard V, et al. Genotype impacts survival in Marfan syndrome. Eur Heart J. 2016; 37(43): 3285–3290.
  73. Hiratzka LF, Bakris GL, Beckman JA, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, Society for Vascular Medicine. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010; 121(13): e266–e369.
  74. Guo DC, Papke CL, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009; 84(5): 617–627.
  75. Milewicz DM, Guo DC, Tran-Fadulu V, et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet. 2008; 9: 283–302.
  76. Dobrowolski P, Kabat M, Kępka C, et al. Atherosclerotic cardiovascular disease burden in patients with familial hypercholesterolemia: interpretation of data on involvement of different vascular beds. Pol Arch Intern Med. 2022; 132(4).
  77. Banach M, Burchardt P, Chlebus K, et al. PoLA/CFPiP/PCS/PSLD/PSD/PSH guidelines on diagnosis and therapy of lipid disorders in Poland 2021. Arch Med Sci. 2021; 17(6): 1447–1547.
  78. Sturm AC, Knowles JW, Gidding SS, et al. Convened by the Familial Hypercholesterolemia Foundation. Clinical genetic testing for familial hypercholesterolemia: JACC scientific expert panel. J Am Coll Cardiol. 2018; 72(6): 662–680.
  79. Beheshti SO, Madsen CM, Varbo A, et al. Worldwide prevalence of familial hypercholesterolemia: meta-analyses of 11 million subjects. J Am Coll Cardiol. 2020; 75(20): 2553–2566.
  80. Cuchel M, Raal FJ, Hegele RA, et al. 2023 update on european atherosclerosis society consensus statement on homozygous familial hypercholesterolaemia: new treatments and clinical guidance. Eur Heart J. 2023; 44(25): 2277–2291.
  81. https://databases.lovd.nl/shared/genes/LDLR (05.12.2023).
  82. Chora JR, Iacocca MA, Tichý L, et al. ClinGen Familial Hypercholesterolemia Expert Panel. The clinical genome resource (clingen) familial hypercholesterolemia variant curation expert panel consensus guidelines for LDLR variant classification. Genet Med. 2022; 24(2): 293–306.
  83. Futema M, Taylor-Beadling A, Williams M, et al. Genetic testing for familial hypercholesterolemia-past, present, and future. J Lipid Res. 2021; 62.
  84. Lenders JWM, Kerstens MN, Amar L, et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens. 2020; 38(8): 1443–1456.
  85. Januszewicz A, Mulatero P, Dobrowolski P, et al. Cardiac phenotypes in secondary hypertension: JACC state-of-the-art review. J Am Coll Cardiol. 2022; 80(15): 1480–1497.
  86. Lipshultz SE, Cochran TR, Briston DA, et al. Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol. 2013; 9(6): 817–848.
  87. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003; 348(17): 1647–1655.
  88. Norrish G, Field E, Mcleod K, et al. Clinical presentation and survival of childhood hypertrophic cardiomyopathy: a retrospective study in United Kingdom. Eur Heart J. 2019; 40(12): 986–993.
  89. Baldo F, Fachin A, Da Re B, et al. New insights on Noonan syndrome's clinical phenotype: a single center retrospective study. BMC Pediatr. 2022; 22(1): 734.
  90. Yardeni M, Weisman O, Mandel H, et al. Psychiatric and cognitive characteristics of individuals with Danon disease (LAMP2 gene mutation). Am J Med Genet A. 2017; 173(9): 2461–2466.
  91. Zenker M. Clinical overview on RASopathies. Am J Med Genet C Semin Med Genet. 2022; 190(4): 414–424.
  92. Ware SM, Bhatnagar S, Dexheimer PJ, et al. Pediatric Cardiomyopathy Registry Study Group. The genetic architecture of pediatric cardiomyopathy. Am J Hum Genet. 2022; 109(2): 282–298.
  93. Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2020; 142(25): e558–e631.
  94. Field E, Norrish G, Acquaah V, et al. Cardiac myosin binding protein-C variants in paediatric-onset hypertrophic cardiomyopathy: natural history and clinical outcomes. J Med Genet. 2022; 59(8): 768–775.
  95. Mussa A, Carli D, Giorgio E, et al. MEK inhibition in a newborn with associated Noonan syndrome ameliorates hypertrophic cardiomyopathy but is insufficient to revert pulmonary vascular disease. Genes (Basel). 2021; 13(1).
  96. Pignatelli RH, McMahon CJ, Dreyer WJ, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003; 108(21): 2672–2678.
  97. Finsterer J, Stöllberger C. Left ventricular noncompaction syndrome: genetic insights and therapeutic perspectives. Curr Cardiol Rep. 2020; 22(9): 84.
  98. Piekutowska-Abramczuk D, Paszkowska A, Ciara E, et al. Genetic profile of left ventricular noncompaction cardiomyopathy in children-a single reference center experience. Genes (Basel). 2022; 13(8).
  99. Jefferies JL, Wilkinson JD, Sleeper LA, et al. Pediatric Cardiomyopathy Registry Investigators. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the pediatric cardiomyopathy registry. J Card Fail. 2015; 21(11): 877–884.
  100. Klaassen S, Kühnisch J, Schultze-Berndt A, et al. Left ventricular noncompaction in children: the role of genetics, morphology, and function for outcome. J Cardiovasc Dev Dis. 2022; 9(7).
  101. Lipshultz SE, Cochran TR, Briston DA, et al. Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol. 2013; 9(6): 817–848.
  102. Wilde A, Semsarian C, Márquez M, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm. 2022; 19(7): e1–e60.
  103. Hershberger RE, Givertz MM, Ho CY, et al. Genetic evaluation of cardiomyopathy: a heart failure society of america practice guideline. J Card Fail. 2018; 24(5): 281–302.
  104. Hershberger RE, Givertz MM, Ho CY, et al. ACMG Professional Practice and Guidelines Committee. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018; 20(9): 899–909.
  105. DeWitt ES, Chandler SF, Hylind RJ, et al. Phenotypic manifestations of arrhythmogenic cardiomyopathy in children and adolescents. J Am Coll Cardiol. 2019; 74(3): 346–358.
  106. Smedsrud MK, Chivulescu M, Forså MI, et al. Highly malignant disease in childhood-onset arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2022; 43(45): 4694–4703.
  107. Landstrom A, Kim J, Gelb B, et al. Genetic testing for heritable cardiovascular diseases in pediatric patients: a scientific statement from the american heart association. Circulation: Genomic and Precision Medicine. 2021; 14(5): e000086.
  108. Pierpont M, Brueckner M, Chung W, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the american heart association. Circulation. 2018; 138(21): e653–e711.
  109. Richter F, Morton SU, Kim SW, et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat Genet. 2020; 52(8): 769–777.
  110. Blue GM, Kirk EP, Giannoulatou E, et al. Advances in the genetics of congenital heart disease: a clinician's guide. J Am Coll Cardiol. 2017; 69(7): 859–870.
  111. Donofrio M, Moon-Grady A, Hornberger L, et al. Diagnosis and treatment of fetal cardiac disease. Circulation. 2014; 129(21): 2183–2242.
  112. Moon-Grady AJ, Donofrio MT, Gelehrter S, et al. Guidelines and recommendations for performance of the fetal echocardiogram: an update from the american society of echocardiography. J Am Soc Echocardiogr. 2023; 36(7): 679–723.
  113. Sieroszewski P, Haus O, Zimmer M, et al. Recommendations for prenatal diagnostics of the Polish Society of Gynaecologists and Obstetricians and the Polish Society of Human Genetics. Ginekol Pol. 2022; 93(5): 427–437.
  114. Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl Pediatr. 2021; 10(9): 2366–2386.
  115. Griffin EL, Nees SN, Morton SU, et al. Evidence-Based assessment of congenital heart disease genes to enable returning results in a genomic study. Circ Genom Precis Med. 2023; 16(2): e003791.
  116. Committee on Genetics and the Society for Maternal-Fetal Medicine. Committee Opinion No.682: Microarrays and Next-Generation Sequencing Technology: The Use of Advanced Genetic Diagnostic Tools in Obstetrics and Gynecology. Obstet Gynecol. 2016; 128(6): e262–e268.
  117. van Nisselrooij AEL, Lugthart MA, Clur SA, et al. The prevalence of genetic diagnoses in fetuses with severe congenital heart defects. Genet Med. 2020; 22(7): 1206–1214.
  118. Fu F, Li Ru, Yu Q, et al. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med. 2022; 14(1): 123.
  119. Ison HE, Griffin EL, Parrott A, et al. Genetic counseling for congenital heart disease: practice resource of the National Society of Genetic Counselors. J Genet Couns. 2022; 31(1): 9–33.
  120. Fellmann F, El Cv, Charron P, et al. European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. European Journal of Human Genetics. 2019; 27(12): 1763–1773.
  121. Castelletti S, Gray B, Basso C, et al. Indications and utility of cardiac genetic testing in athletes. Eur J Prev Cardiol. 2022; 29(12): 1582–1591.
  122. https://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/ (29.12.2023).
  123. James CA, Jongbloed JDH, Hershberger RE, et al. International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the clinical genome resource framework. Circ Genom Precis Med. 2021; 14(3): e003273.
  124. Charron P, Arad M, Arbustini E, et al. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2010; 31(22): 2715–2726.
  125. Monaghan KG, Leach NT, Pekarek D, et al. ACMG Professional Practice and Guidelines Committee. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020; 22(4): 675–680.



Polish Heart Journal (Kardiologia Polska)