open access

Vol 6 (2021): Continuous Publishing
Case report
Published online: 2021-12-30
Get Citation

Optical coherence tomography findings in compressive optic neuropathy and pre-existing glaucoma

Carlos Eduardo Rivera1234, Catalina Ferreira1234, Juan Carlos Aristizabal12, Edgar Muñoz15, Ankur Seth136
·
Ophthalmol J 2021;6:249-254.
Affiliations
  1. Collective Innovations Colombia, Cali, Colombia
  2. Pontificia Universidad Javeriana, Cali, Colombia
  3. GSR Medical Center, Cali, Colombia
  4. GSR International, United States, united states
  5. UT Health San Antonio, San Antonio, United States
  6. University of Tennesse Health Science Center, Memphis, United States

open access

Vol 6 (2021): Continuous Publishing
CASE REPORTS
Published online: 2021-12-30

Abstract

Background: We present the optical coherence tomography (OCT) findings in macular ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) in a case of a female patient with craniopharyngioma and preexisting glaucoma.

Case presentation: 80-year-old female patient with a history of successfully suprasellar resection of craniopharyngioma performed eight years earlier and preexisting primary open-angle glaucoma treated with latanoprost indicated a one-month history of decreased vision in the left eye. The visual field showed a vertical hemifield defect in the right eye and an inferior arcuate defect in the left eye. A cerebral magnetic resonance image confirmed a new suprasellar tumor. The patient was successfully operated on one week after diagnosis. Visual acuity in her left eye improved substantially after surgery.

Results: Optical coherence tomography of macular and RNFL showed thinning in the patient’s right eye that corresponded with the vertical visual field defect. A “C” pattern that compromised the horizontal meridian differentiated from glaucoma that respects the horizontal meridian. The visual field showed a vertical hemifield defect in the right eye and an inferior arcuate defect in the left eye.

Conclusions: Optical coherence tomography is a non-invasive imaging procedure. It helps identify compression of the anterior visual pathways, resulting in progressive thinning of RNFL and macular ganglion cell complex (GCC). It has a good correlation with visual fields.

Abstract

Background: We present the optical coherence tomography (OCT) findings in macular ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL) in a case of a female patient with craniopharyngioma and preexisting glaucoma.

Case presentation: 80-year-old female patient with a history of successfully suprasellar resection of craniopharyngioma performed eight years earlier and preexisting primary open-angle glaucoma treated with latanoprost indicated a one-month history of decreased vision in the left eye. The visual field showed a vertical hemifield defect in the right eye and an inferior arcuate defect in the left eye. A cerebral magnetic resonance image confirmed a new suprasellar tumor. The patient was successfully operated on one week after diagnosis. Visual acuity in her left eye improved substantially after surgery.

Results: Optical coherence tomography of macular and RNFL showed thinning in the patient’s right eye that corresponded with the vertical visual field defect. A “C” pattern that compromised the horizontal meridian differentiated from glaucoma that respects the horizontal meridian. The visual field showed a vertical hemifield defect in the right eye and an inferior arcuate defect in the left eye.

Conclusions: Optical coherence tomography is a non-invasive imaging procedure. It helps identify compression of the anterior visual pathways, resulting in progressive thinning of RNFL and macular ganglion cell complex (GCC). It has a good correlation with visual fields.

Get Citation

Keywords

optical coherence tomography; glaucoma; craniopharyngioma; visual field; visual acuity

About this article
Title

Optical coherence tomography findings in compressive optic neuropathy and pre-existing glaucoma

Journal

Ophthalmology Journal

Issue

Vol 6 (2021): Continuous Publishing

Article type

Case report

Pages

249-254

Published online

2021-12-30

Page views

5770

Article views/downloads

338

DOI

10.5603/OJ.2021.0042

Bibliographic record

Ophthalmol J 2021;6:249-254.

Keywords

optical coherence tomography
glaucoma
craniopharyngioma
visual field
visual acuity

Authors

Carlos Eduardo Rivera
Catalina Ferreira
Juan Carlos Aristizabal
Edgar Muñoz
Ankur Seth

References (20)
  1. Hoyt WF, Luis O. The primate chiasm. Details of visual fiber organization studied by silver impregnation techniques. Arch Ophthalmol. 1963; 70: 69–85.
  2. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991; 254(5035): 1178–1181.
  3. Popescu DP, Choo-Smith LP, Flueraru C, et al. Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys Rev. 2011; 3(3): 155.
  4. Micieli JA, Newman NJ, Biousse V. The role of optical coherence tomography in the evaluation of compressive optic neuropathies. Curr Opin Neurol. 2019; 32(1): 115–123.
  5. Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014; 98(Suppl 2): ii15–ii19.
  6. Al-Dahmani K, Mohammad S, Imran F, et al. Sellar Masses: An Epidemiological Study. Can J Neurol Sci. 2016; 43(2): 291–297.
  7. Biousse V, Newman N. Diagnosis and clinical features of common optic neuropathies. Lancet Neurol. 2016; 15(13): 1355–1367.
  8. Unsöld R, Hoyt WF. Band atrophy of the optic nerve. The histology of temporal hemianopsia. Arch Ophthalmol. 1980; 98(9): 1637–1638.
  9. Mwanza JC, Oakley JD, Budenz DL, et al. Cirrus Optical Coherence Tomography Normative Database Study Group. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011; 118(2): 241–248.e1.
  10. Sun M, Zhang Z, Ma C, et al. Quantitative analysis of retinal layers on three-dimensional spectral-domain optical coherence tomography for pituitary adenoma. PLoS One. 2017; 12(6): e0179532.
  11. Akashi A, Kanamori A, Ueda K, et al. The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest Ophthalmol Vis Sci. 2014; 55(7): 4667–4672.
  12. Zehnder S, Wildberger H, Hanson JVM, et al. Retinal Ganglion Cell Topography in Patients With Visual Pathway Pathology. J Neuroophthalmol. 2018; 38(2): 172–178.
  13. Monteiro MLR, Hokazono K, Fernandes DB, et al. Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci. 2014; 55(5): 3328–3336.
  14. Tieger MG, Hedges TR, Ho J, et al. Ganglion Cell Complex Loss in Chiasmal Compression by Brain Tumors. J Neuroophthalmol. 2017; 37(1): 7–12.
  15. Newman S, Turbin R, Bodach M, et al. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline on Pretreatment Ophthalmology Evaluation in Patients With Suspected Nonfunctioning Pituitary Adenomas. Neurosurgery. 2016; 79(4): E530–E532.
  16. Danesh-Meyer HV, Wong A, Papchenko T, et al. Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci. 2015; 22(7): 1098–1104.
  17. Moon CH, Hwang SC, Ohn YH, et al. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci. 2011; 52(11): 7966–7973.
  18. Cottee L, Daniel C, Loh W, et al. Remyelination and recovery of conduction in cat optic nerve after demyelination by pressure. Exp Neurol. 2003; 184(2): 865–877.
  19. Danesh-Meyer HV, Papchenko T, Savino PJ, et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci. 2008; 49(5): 1879–1885.
  20. Yum HRi, Park SH, Park HYL, et al. Macular Ganglion Cell Analysis Determined by Cirrus HD Optical Coherence Tomography for Early Detecting Chiasmal Compression. PLoS One. 2016; 11(4): e0153064.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Publisher: VM Media Group sp. z o.o., Grupa Via Medica, 73 Świętokrzyska St., 80–180 Gdańsk

tel.:+48 58 310 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl