Vol 5 (2020): Continuous Publishing
Review paper
Published online: 2020-09-18

open access

Page views 1081
Article views/downloads 1085
Get Citation

Connect on Social Media

Connect on Social Media

Antioxidants in the retina and vitreous — current state of knowledge

Agata Pietras-Baczewska1, Katarzyna Nowomiejska1, Małgorzata Sztanke2, Mario Damiano Toro13, Robert Rejdak1
Ophthalmol J 2020;5:81-86.


In the healthy organism, there is a constant balance between the formation and neutralization of free radicals. Oxidative stress is a result of free radicals’ production and naturalization imbalance, in favor of the free radicals’ high concentration. Literature suggests the existence of the relationship between decreased intraocular antioxidant capacity and ocular diseases. Retina and the photoreceptors in particularl, are susceptible to oxygen deficiency due to their great oxygen consumption. The aim of this review was to describe the relationship between oxidative stress and the most common vitreoretinal disorders. The authors focused on four ocular diseases such as vitreous degeneration, rhegmatogenous retinal detachment, age-related macular degeneration and diabetic retinopathy. It was widely proven that high oxidative stress damages retina by the acceleration of photoreceptors and ganglion cells apoptosis.

Available data suggesting that substances scavenging oxidative stress may be effective in slowing down the progression of these degenerative ocular diseases. However, the effects of antioxidants treatment are ambiguous, successful results of experimental studies lead straight to clinical use in human in the future.

Article available in PDF format

View PDF Download PDF file


  1. Siegfried CJ, Shui YB. Intraocular Oxygen and Antioxidant Status: New Insights on the Effect of Vitrectomy and Glaucoma Pathogenesis. Am J Ophthalmol. 2019; 203: 12–25.
  2. Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001; 54(3): 176–186.
  3. Saccà SC, Izzotti A. Oxidative stress and glaucoma: injury in the anterior segment of the eye. Prog Brain Res. 2008; 173: 385–407.
  4. Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res. 2013; 752(2): 153–171.
  5. Bishop P. The biochemical structure of mammalian vitreous. Eye (Lond). 1996; 10 ( Pt 6): 664–670.
  6. Kita T, Sakamoto T, Ishibashi T. Hyalocytes: Essential Vitreous Cells in Vitreoretinal Health and Disease. In: Vitreous. Springer, Berlin/Heidelberg 2014: 151–164.
  7. Kański J. Okulistyka kliniczna. Elsevier Urban & Partner, Wrocław 2013: 716.
  8. Sebag J. Posterior Vitreous Detachment. Ophthalmology. 2018; 125(9): 1384–1385.
  9. Nuzzi R, Marchese A, Gulino GR, et al. Influence of posterior vitreous detachment and type of intraocular lens on lipid peroxidation in the human vitreous. Mol Vis. 2015; 21: 1106–1112.
  10. Ueno N, Sebag J, Hirokawa H, et al. Effects of visible-light irradiation on vitreous structure in the presence of a photosensitizer. Exp Eye Res. 1987; 44(6): 863–870.
  11. Akiba J. [Photodynamically induced vitreous liquefaction in vivo]. Nippon Ganka Gakkai Zasshi. 1992; 96(6): 731–736.
  12. Berra A, Ferreira S, Stanga P, et al. Age-related antioxidant capacity of the vitreous and its possible relationship with simultaneous changes in photoreceptors, retinal pigment epithelium and Bruchs' membrane in human donors' eyes. Arch Gerontol Geriatr. 2002; 34(3): 371–377.
  13. Goldberg H. Retinal Detachment. BMJ. 1959; 2(5144): 153–154.
  14. Bechrakis NE, Dimmer A. Rhegmatogene Netzhautablösung. Der Ophthalmologe. 2018; 115(2): 163–178.
  15. Kański J, Jacek J. Okulistyka kliniczna. Elsevier Urban & Partner, Wrocław 2013: 674–678.
  16. Suzuki Y, Adachi K, Takanashi S, et al. Oxidative Stress in the Vitreous Fluid with Rhegmatogenous Retinal Detachment. J Clin Exp Ophthalmol. 2017; 6(5): 1–5.
  17. Maeno A, Suzuki Y, Adachi K, et al. Characterization of the biological antioxidant potential in the vitreous fluid from patients with rhegmatogenous retinal detachment. Acta Ophthalmol. 2016; 94(6): e515–e516.
  18. She X, Lu X, Li T, et al. Inhibition of Mitochondrial Fission Preserves Photoreceptors after Retinal Detachment. Am J Pathol. 2018; 188(7): 1713–1722.
  19. Roh MiIn, Murakami Y, Thanos A, et al. Edaravone, an ROS scavenger, ameliorates photoreceptor cell death after experimental retinal detachment. Invest Ophthalmol Vis Sci. 2011; 52(6): 3825–3831.
  20. Lei H, Velez G, Cui J, et al. N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. Am J Pathol. 2010; 177(1): 132–140.
  21. Kostrzewa B, Rojek A, Gabryś J. Starcze zwyrodnienie plamki żółtej — choroba cywilizacyjna XXI wieku. Acta Bio-Optica et Informatica Medica Inżynieria Biomedyczna. 2015; 21(2): 77–85.
  22. Jonas JB, Cheung CM, Panda-Jonas S. Updates on the Epidemiology of Age-Related Macular Degeneration. Asia Pac J Ophthalmol (Phila). 2017; 6(6): 493–497.
  23. Masuda T, Shimazawa M, Hara H. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone). Oxid Med Cell Longev. 2017; 2017: 9208489.
  24. Golden TR, Hinerfeld DA, Melov S. Oxidative stress and aging: beyond correlation. Aging Cell. 2002; 1(2): 117–123.
  25. Katz M, Robison W. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Archives of Gerontology and Geriatrics. 2002; 34(3): 169–184.
  26. Kaarniranta K, Pawlowska E, Szczepanska J, et al. Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int J Mol Sci. 2019; 20(10).
  27. Domènech EB, Marfany G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants (Basel). 2020; 9(4).
  28. Takayama K, Kaneko H, Kataoka K, et al. Nuclear Factor (Erythroid-Derived)-Related Factor 2-Associated Retinal Pigment Epithelial Cell Protection under Blue Light-Induced Oxidative Stress. Oxid Med Cell Longev. 2016; 2016: 8694641.
  29. Kansanen E, Kuosmanen SM, Leinonen H, et al. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013; 1: 45–49.
  30. Felszeghy S, Viiri J, Paterno JJ, et al. Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biol. 2019; 20: 1–12.
  31. Datta S, Cano M, Ebrahimi K, et al. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017; 60: 201–218.
  32. World Health Organization. Global status report on noncommunicable diseases 2014 (No. WHO/NMH/NVI/15.1). WHO, Geneva 2014.
  33. Cecilia OM, José Alberto CG, José NP, et al. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J Diabetes Res. 2019; 2019: 8562408.
  34. Yan LJ. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med. 2018; 1(1): 7–13.
  35. Masuda T, Shimazawa M, Hara H. Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone). Oxid Med Cell Longev. 2017; 2017: 9208489.
  36. Izuta H, Matsunaga N, Shimazawa M, et al. Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress, and VEGF in the vitreous body. Mol Vis. 2010; 16: 130–136.
  37. Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Exp Diabetes Res. 2007; 2007: 43603.
  38. Kowluru RA, Koppolu P. Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radic Res. 2002; 36(9): 993–999.
  39. Williams M, Hogg RE, Chakravarthy U. Antioxidants and diabetic retinopathy. Curr Diab Rep. 2013; 13(4): 481–487.