Vol 3, No 2 (2018)
Review paper
Published online: 2017-11-13

open access

Page views 869
Article views/downloads 4642
Get Citation

Connect on Social Media

Connect on Social Media

Jak skutecznie leczyć wysiękową postać zwyrodnienia plamki związanego z wiekiem według schematu PRN? Rola biomarkerów widocznych w obrazach optycznej koherentnej tomografii

Anna Matysik-Woźniak1, Marek Rękas, Robert Rejdak
Ophthalmol J 2018;3(2):47-57.

Abstract

Optymalizacja leczenia uwzględniająca indywidualny przebieg choroby nadal pozostaje jednym z podstawowych problemow w leczeniu wysiękowej postaci zwyrodnienia plamki związanego z wiekiem (AMD). W niniejszej pracy autorzy zawarli wskazowki, ktore mogą być pomocne podczas terapii według schematu pro-re-nata (PRN). Obecnie ma on zastosowanie u większości pacjentow będących w programie lekowym. Jednym z podstawowych problemow jest właściwa ocena aktywności choroby, ktora stanowi podstawę decyzji o wykonaniu kolejnej iniekcji lekow blokujących czynnik wzrostu środbłonka naczyń (anty-VEGF). Określenie parametrow, takich jak stan fotoreceptorow czy nabłonka barwnikowego siatkowki (RPE), lokalizacja płynu, zachowanie prawidłowego układu warstw siatkowki, obecność schorzeń pogranicza szklistkowo-siatkowkowego, wpływa na ocenę stanu klinicznego i rokowanie chorych.

Article available in PDF format

View PDF Download PDF file

References

  1. Rofagha S, Bhisitkul RB, Boyer DS, et al. SEVEN-UP Study Group. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013; 120(11): 2292–2299.
  2. Schmidt-Erfurth U, Chong V, Loewenstein A, et al. European Society of Retina Specialists. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol. 2014; 98(9): 1144–1167.
  3. Channa R, Sophie R, Bagheri S, et al. Regression of choroidal neovascularization results in macular atrophy in anti-vascular endothelial growth factor-treated eyes. Am J Ophthalmol. 2015; 159(1): 9–19.e1.
  4. Holz FG, Tadayoni R, Beatty S, et al. Determinants of visual acuity outcomes in eyes with neovascular AMD treated with anti-VEGF agents: an instrumental variable analysis of the AURA study. Eye (Lond). 2016; 30(8): 1063–1071.
  5. Holz FG, Tadayoni R, Beatty S, et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br J Ophthalmol. 2015; 99(2): 220–226.
  6. Amoaku WM, Chakravarthy U, Gale R, et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye (Lond). 2015; 29(6): 721–731.
  7. Framme, C N. Eter, C. Jochmann, H. Schilling, P. Wiedemann, H. Sachs, Z. Hasanbasic, Wachtlin J. PERSEUS 12 month analysis: A Prospective Non-interventional Study to Assess the Effectiveness of Intravitreal Afl ibercept in Routine Clinical Practice in Patients with Wet Age-related Macular Degeneration. 16th EURETINA. ; 2016.
  8. Real Life Use of Intravitreal Aflibercept In France : Observational study in Wet AMD : the RAINBOW study. Association for Research in Vision and Ophthalmology (AVRO), poster 524-A. 0161; 2016.
  9. Wet Age-Related Macular Degeneration. Ophthalmology: Current and Future Developments. 2016: 168–185.
  10. Epstein D, Amrén U. NEAR VISION OUTCOME IN PATIENTS WITH AGE-RELATED MACULAR DEGENERATION TREATED WITH AFLIBERCEPT. Retina. 2016; 36(9): 1773–1777.
  11. Lee AY, Lee CS, Egan CA, et al. UK AMD/DR EMR REPORT IX: comparative effectiveness of predominantly as needed (PRN) ranibizumab versus continuous aflibercept in UK clinical practice. Br J Ophthalmol. 2017 [Epub ahead of print].
  12. Eleftheriadou M, Vazquez-Alfageme C, Citu CM, et al. Long-Term Outcomes of Aflibercept Treatment for Neovascular Age-Related Macular Degeneration in a Clinical Setting. Am J Ophthalmol. 2017; 174: 160–168.
  13. Barthelmes D, Nguyen V, Daien V, et al. Fight Retinal Blindness Study Group. TWO YEAR OUTCOMES OF "TREAT AND EXTEND" INTRAVITREAL THERAPY USING AFLIBERCEPT PREFERENTIALLY FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina. 2017 [Epub ahead of print].
  14. Talks JS, Lotery AJ, Ghanchi F, et al. United Kingdom Aflibercept Users Group. First-Year Visual Acuity Outcomes of Providing Aflibercept According to the VIEW Study Protocol for Age-Related Macular Degeneration. Ophthalmology. 2016; 123(2): 337–343.
  15. Almuhtaseb H, Johnston RL, Talks JS, et al. Second-year visual acuity outcomes of nAMD patients treated with aflibercept: data analysis from the UK Aflibercept Users Group. Eye (Lond). 2017 [Epub ahead of print].
  16. Kaiser P, Singer M, Tolentino M, et al. Long-term Safety and Visual Outcome of Intravitreal Aflibercept in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina. 2017; 1(4): 304–313.
  17. DeCroos FC, Reed D, Adam MK, et al. Treat-and-Extend Therapy Using Aflibercept for Neovascular Age-related Macular Degeneration: A Prospective Clinical Trial. Am J Ophthalmol. 2017; 180: 142–150.
  18. Holz FG, Bandello F, Gillies M, et al. LUMINOUS Steering Committee. Safety of ranibizumab in routine clinical practice: 1-year retrospective pooled analysis of four European neovascular AMD registries within the LUMINOUS programme. Br J Ophthalmol. 2013; 97(9): 1161–1167.
  19. Wolf A, Kampik A. Efficacy of treatment with ranibizumab in patients with wet age-related macular degeneration in routine clinical care: data from the COMPASS health services research. Graefes Arch Clin Exp Ophthalmol. 2014; 252(4): 647–655.
  20. Yang Y, Downey L, Mehta H, et al. Resource Use and Real-World Outcomes for Ranibizumab Treat and Extend for Neovascular Age-Related Macular Degeneration in the UK: Interim Results from TERRA. Ophthalmol Ther. 2017; 6(1): 175–186.
  21. Silva R, Goncalves C, Meireles A, et al. A Retrospective Analysis of the Real-Life Utilization of Ranibizumab in Patients with Wet Age-Related Macular Degeneration from Portugal. Acta Med Port. 2017; 30(6): 449–456.
  22. Writing Committee for the UK Age-Related Macular Degeneration EMR Users Group. The neovascular age-related macular degeneration database: multicenter study of 92 976 ranibizumab injections: report 1: visual acuity. Ophthalmology. 2014; 121(5): 1092–1101.
  23. Berg K, Pedersen TR, Sandvik L, et al. Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology. 2015; 122(1): 146–152.
  24. Wykoff CC, Croft DE, Brown DM, et al. TREX-AMD Study Group. Prospective Trial of Treat-and-Extend versus Monthly Dosing for Neovascular Age-Related Macular Degeneration: TREX-AMD 1-Year Results. Ophthalmology. 2015; 122(12): 2514–2522.
  25. Chen YN, Powell AM, Mao A, et al. RETROSPECTIVE REVIEW OF LUCENTIS "TREAT AND EXTEND" PATTERNS AND OUTCOMES IN AGE-RELATED MACULAR DEGENERATION. Retina. 2016; 36(2): 272–278.
  26. Ho AC, Busbee BG, Regillo CD, et al. HARBOR Study Group. Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology. 2014; 121(11): 2181–2192.
  27. Lalwani GA, Rosenfeld PJ, Fung AE, et al. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am J Ophthalmol. 2009; 148(1): 43–58.e1.
  28. Singer MA, Awh CC, Sadda S, et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology. 2012; 119(6): 1175–1183.
  29. Holz FG, Korobelnik JF, Lanzetta P, et al. The effects of a flexible visual acuity-driven ranibizumab treatment regimen in age-related macular degeneration: outcomes of a drug and disease model. Invest Ophthalmol Vis Sci. 2010; 51(1): 405–412.
  30. Schmidt-Erfurth U, Waldstein SM. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res. 2016; 50: 1–24.
  31. Chong V. Ranibizumab for the treatment of wet AMD: a summary of real-world studies. Eye (Lond). 2016; 30(2): 270–286.
  32. Holz FG, Tadayoni R, Beatty S, et al. Key drivers of visual acuity gains in neovascular age-related macular degeneration in real life: findings from the AURA study. Br J Ophthalmol. 2016; 100(12): 1623–1628.
  33. Huang D, Jia Y, Rispoli M, et al. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF TIME COURSE OF CHOROIDAL NEOVASCULARIZATION IN RESPONSE TO ANTI-ANGIOGENIC TREATMENT. Retina. 2015; 35(11): 2260–2264.
  34. Fung AE, Lalwani GA, Rosenfeld PJ, et al. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol. 2007; 143(4): 566–583.
  35. Waldstein SM, Wright J, Warburton J, et al. Predictive Value of Retinal Morphology for Visual Acuity Outcomes of Different Ranibizumab Treatment Regimens for Neovascular AMD. Ophthalmology. 2016; 123(1): 60–69.
  36. Waldstein SM, Philip AM, Leitner R, et al. Correlation of 3-Dimensionally Quantified Intraretinal and Subretinal Fluid With Visual Acuity in Neovascular Age-Related Macular Degeneration. JAMA Ophthalmol. 2016; 134(2): 182–190.
  37. Pelosini L, Hull CC, Boyce JF, et al. Optical coherence tomography may be used to predict visual acuity in patients with macular edema. Invest Ophthalmol Vis Sci. 2011; 52(5): 2741–2748.
  38. Jaffe GJ, Martin DF, Toth CA, et al. Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2013; 120(9): 1860–1870.
  39. Dirani A, Ambresin A, Marchionno L, et al. Factors Influencing the Treatment Response of Pigment Epithelium Detachment in Age-Related Macular Degeneration. Am J Ophthalmol. 2015; 160(4): 732–8.e2.
  40. Gianniou C, Dirani A, Jang L, et al. REFRACTORY INTRARETINAL OR SUBRETINAL FLUID IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION TREATED WITH INTRAVITREAL RANIZUBIMAB: Functional and Structural Outcome. Retina. 2015; 35(6): 1195–1201.
  41. Pokroy R, Mimouni M, Barayev E, et al. PROGNOSTIC VALUE OF SUBRETINAL HYPERREFLECTIVE MATERIAL IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION TREATED WITH BEVACIZUMAB. Retina. 2017 [Epub ahead of print].
  42. Grunwald JE, Pistilli M, Daniel E, et al. Comparison of Age-Related Macular Degeneration Treatments Trials Research Group. Incidence and Growth of Geographic Atrophy during 5 Years of Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2017; 124(1): 97–104.
  43. Grunwald JE, Pistilli M, Daniel E, et al. Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2015; 122(4): 809–816.
  44. Ying Gs, Kim BJ, Maguire MG, et al. CATT Research Group. Sustained visual acuity loss in the comparison of age-related macular degeneration treatments trials. JAMA Ophthalmol. 2014; 132(8): 915–921.
  45. Grunwald JE, Daniel E, Huang J, et al. CATT Research Group. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014; 121(1): 150–161.
  46. Coscas F, Coscas G, Lupidi M, et al. Restoration of Outer Retinal Layers After Aflibercept Therapy in Exudative AMD: Prognostic Value. Invest Ophthalmol Vis Sci. 2015; 56(6): 4129–4134.
  47. Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, et al. Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina. 2017.