Vol 9 (2024): Continuous Publishing
Review paper
Published online: 2024-07-04

open access

Page views 83
Article views/downloads 52
Get Citation

Connect on Social Media

Connect on Social Media

The role of artificial intelligence in ophthalmology — brief review

Maria Myślicka1, Klaudia Włodarczyk1, Aleksandra Kawala-Sterniuk2, Dariusz Mikołajewski34, Emilia Mikołajewska5
Ophthalmol J 2024;9:106-113.


Artificial intelligence (AI) is rapidly developing and supporting all areas of medical science and clinical practice. This review discusses the development and potential practical use of AI in the field of ophthalmology.

The aim of the study was to assess to what extent the opportunities offered by the introduction of artificial intelligence into ophthalmology have been exploited and what their developmental potential is, with a particular focus on clinical practice. The identified scientific gap lies in the very early stage of research into the application of AI in ophthalmology.

A comprehensive review of existing applications of AI in ophthalmology shows how AI is already or can be used to support ophthalmologists in preventing, diagnosing, predicting disease, planning and monitoring treatment, and then evaluating changes cyclically. Wider implementation of AI technology in ophthalmology could improve early lesion detection, reduce misdiagnosis and contribute to better overall patient care.

Article available in PDF format

View PDF Download PDF file


  1. Rubeis G. Artificial Intelligence: In Search of a Definition. In: Rubeis G. ed. Ethics of Medical AI. Springer International Publishing, Cham 2024: 15–22.
  2. Aliferis C, Simon G. Foundations and Properties of AI/ML Systems. In: Aliferis C, Simon G. ed. In: Artificial Intelligence anMachine Learning in Health Care and Medical Sciences: Best Practices and Pitfalls. Springer International Publishing, Cham 2024: 33–94.
  3. Sarker M. Revolutionizing Healthcare: The Role of Machine Learning in the Health Sector. J Art Intel Gen Sci (JAIGS). 2024; 2(1): 35–48.
  4. Heger KA, Waldstein SM. Artificial intelligence in retinal imaging: current status and future prospects. Expert Rev Med Devices. 2024; 21(1-2): 73–89.
  5. Schank RC. What is AI, anyway? AI magazine. 1987; 8(4): 59–59.
  6. Patrzyk S, Woźniacka A. Sztuczna inteligencja w medycynie. Vol. 6. Uniwersytet Medyczny w Łodzi, Łódź 2022.
  7. Tey KY, Cheong EZ, Ang M. Potential applications of artificial intelligence in image analysis in cornea diseases: a review. Eye Vis (Lond). 2024; 11(1): 10.
  8. Rahman MdA, Victoros E, Ernest J, et al. Impact of Artificial Intelligence (AI) Technology in Healthcare Sector: A Critical Evaluation of Both Sides of the Coin. Clin Pathol. 2024; 17: 2632010X241226887.
  9. Akhlaghi H, Freeman S, Vari C, et al. Machine learning in clinical practice: Evaluation of an artificial intelligence tool after implementation. Emerg Med Australas. 2024; 36(1): 118–124.
  10. Miao H, Zou Z, Xu J, et al. Advancing systemic disease diagnosis through ophthalmic image‐based artificial intelligence. MedComm – Fut Med. 2024; 3(1).
  11. Dalvi C, Rathod M, Patil S, et al. A Survey of AI-Based Facial Emotion Recognition: Features, ML & DL Techniques, Age-Wise Datasets and Future Directions. IEEE Access. 2021; 9: 165806–165840.
  12. Muhammad I, Yan Z. Supervised machine learning approaches: a survey. ICTACT J Soft Comp. 2015; 05(03): 946–952.
  13. Mohammed M, Khan MB, Bashier EBM. Machine learning: Algorithms and applications. CRC Press 2016.
  14. Miao H, Zou Z, Xu J, et al. Advancing systemic disease diagnosis through ophthalmic image‐based artificial intelligence. MedComm. Fut. Med. 2024; 3(1).
  15. Chandramohan N, Hinton J, O'Kane P, et al. Artificial Intelligence for the Interventional Cardiologist: Powering and Enabling OCT Image Interpretation. Interv Cardiol. 2024; 19: e03.
  16. Restrepo D, Quion JM, Do Carmo Novaes F, et al. Ophthalmology Optical Coherence Tomography Databases for Artificial Intelligence Algorithm: A Review. Semin Ophthalmol. 2024; 39(3): 193–200.
  17. Muhammad I, Yan Z. Supervised machine learning approaches: A survey. ICTACT J Soft Comp. 2015; 05(03): 946–952.
  18. Peterson RC, Wolffsohn JS. The effect of digital image resolution and compression on anterior eye imaging. Br J Ophthalmol. 2005; 89(7): 828–830.
  19. Stahl A. The Diagnosis and Treatment of Age-Related Macular Degeneration. Dtsch Arztebl Int. 2020; 117(29-30): 513–520.
  20. Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021; 7(1): 31.
  21. Thomas CJ, Mirza RG, Gill MK. Age-Related Macular Degeneration. Med Clin North Am. 2021; 105(3): 473–491.
  22. Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 2010; 29(5): 335–375.
  23. Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharm Rep. 2006; 58(3): 353.
  24. Taylor DJ, Edwards LA, Binns AM, et al. Seeing it differently: self-reported description of vision loss in dry age-related macular degeneration. Ophthalmic Physiol Opt. 2018; 38(1): 98–105.
  25. Udoh MME, Thelma C, Nkanga G. Vitreo-retina. Trans Ophthalmol Soc Nigeria. 2019; 4(1): 25.
  26. Kozlowski MR. RPE cell senescence: a key contributor to age-related macular degeneration. Med Hypotheses. 2012; 78(4): 505–510.
  27. Guymer RH, Campbell TG. Age-related macular degeneration. Lancet. 2023; 401(10386): 1459–1472.
  28. Tan TF, Thirunavukarasu AJ, Jin L, et al. Artificial intelligence and digital health in global eye health: opportunities and challenges. Lancet Glob Health. 2023; 11(9): e1432–e1443.
  29. Burlina PM, Joshi N, Pekala M, et al. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2017; 135(11): 1170–1176.
  30. Wong TY, Liew G, Mitchell P. Clinical update: new treatments for age-related macular degeneration. Lancet. 2007; 370(9583): 204–206.
  31. Uzdrowska M, Bilińska E, Broniarczyk-Loba A. Wpływ terapii anty-VEGF na widzenie obuoczne u chorych na zwyrodnienie plamki związane z wiekiem. Klin Oczna. 2017; 119(1).
  32. Burlina PM, Joshi N, Pacheco KD, et al. Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year Risk Among Patients With Age-Related Macular Degeneration. JAMA Ophthalmol. 2018; 136(12): 1359–1366.
  33. Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology. 2019; 126(4): 565–575.
  34. Schlegl T, Waldstein SM, Bogunovic H, et al. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology. 2018; 125(4): 549–558.
  35. Fong DS, Aiello L, Gardner TW, et al. American Diabetes Association. Diabetic retinopathy. Diab Care. 2003; 26(Suppl. 1): s99–s102.
  36. Tan TE, Wong TY. Diabetic retinopathy: Looking forward to 2030. Front Endocrinol (Lausanne). 2022; 13: 1077669.
  37. Scanlon PH, Aldington SJ, Leal J, et al. Epidemiological issues in diabetic retinopathy. Middle East Afr J Ophthalmol. 2013; 20(4): 293–300.
  38. Perez AM, Neag E, Sridhar J, et al. Weight loss, bariatric surgery, and novel antidiabetic drugs effects on diabetic retinopathy: a review. Curr Opin Ophthalmol. 2024; 35(3): 192–196.
  39. Jewusiak-Rogulska M, Kocięcki JA. Epidemiologia, klasyfikacja i nowoczesne metody leczenia retinopatii cukrzycowej. Nowiny Lekarskie. 2013; 82(3): 253–258.
  40. Tufail A, Rudisill C, Egan C, et al. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Ophthalmology. 2017; 124(3): 343–351.
  41. Fenner BJ, Wong RLM, Lam WC, et al. Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review. Ophthalmol Ther. 2018; 7(2): 333–346.
  42. Mannaf SMA, Islam MdS, Islam MN, et al. Population-based survey of the prevalence and types of glaucoma in Bangladesh. BMJ Open Ophthalmol. 2024; 9(1).
  43. Olszewska H, Wojciechowska K, Jegier A. [Glaucoma prophylaxis]. Med Rodz. 2009; 2: 29–37.
  44. Devalla SK, Chin KS, Mari JM, et al. A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head. Invest Ophthalmol Vis Sci. 2018; 59(1): 63–74.
  45. Nagra M, Huntjens B. Smartphone ophthalmoscopy: patient and student practitioner perceptions. J Med Syst. 2019; 44(1): 10.
  46. Keskinbora K, Güven F. Artificial Intelligence and Ophthalmology. Turk J Ophthalmol. 2020; 50(1): 37–43.
  47. Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol. 2019; 47(1): 128–139.
  48. Popescu Patoni SI, Muşat AA, Patoni C, et al. Artificial intelligence in ophthalmology. Rom J Ophthalmol. 2023; 67(3): 207–213.
  49. Wiedemann P. Artificial intelligence in ophthalmology. Int J Ophthalmol. 2023; 16(9): 1357–1360.
  50. Balyen L, Peto T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac J Ophthalmol (Phila). 2019; 8(3): 264–272.
  51. Ting DS, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019; 103(2): 167–175.
  52. Dutt S, Sivaraman A, Savoy F, et al. Insights into the growing popularity of artificial intelligence in ophthalmology. Indian J Ophthalmol. 2020; 68(7): 1339–1346.
  53. Agarwal S. Role of artificial intelligence in cornea practice. Indian J Ophthalmol. 2024; 72(Suppl 2): S159–S160.
  54. Mikołajewska E, Mikołajewski D. Integrated IT environment for people with disabilities: a new concept. Open Medicine. 2014; 9(1): 177–182.
  55. Mikołajewska E, Prokopowicz P, Mikolajewski D. Computational gait analysis using fuzzy logic for everyday clinical purposes – preliminary findings. Bio-Algorithms and Med-Systems. 2017; 13(1): 37–42.
  56. Prokopowicz P, Mikołajewski D, Mikołajewska E, Kotlarz P. Fuzzy System as an Assessment Tool for Analysis of the Health-Related Quality of Life for the People After Stroke. In: 16th International Conference on Artificial Intelligence and Soft Computing (ICAISC) 2017. ICAISC 2017: 10245: 710–721.