Online first
Artykuł przeglądowy
Opublikowany online: 2024-02-23
Wyświetlenia strony 147
Wyświetlenia/pobrania artykułu 5
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Nowości w leczeniu chorych na zróżnicowane raki tarczycy

Marek Dedecjus1

Streszczenie

W niniejszym artykule przedstawiono obecny stan wiedzy z zakresu leczenia zróżnicowanych raków tarczycy (ZRT). Nowotwory te są najczęściej diagnozowanymi rakami tarczycy. Do ZRT należą: rak brodawkowaty tarczycy, inwazyjny otorebkowany wariant pęcherzykowy, rak pęcherzykowy oraz rak onkocytarny. W artykule zaprezentowano postępy w zakresie leczenia chirurgicznego z uwzględnieniem technik minimalnie inwazyjnych, a także zasady aktywnego nadzoru tego typu nowotworów. Ponadto przedstawiono zasady leczenia jodem promieniotwórczym oraz dostępne metody leczenia w przypadku wystąpienia oporności na leczenie radiojodem, ze szczególnym uwzględnieniem leczenia z wykorzystaniem inhibitorów kinaz.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022; 33(1): 27–63.
  2. Haugen B, Sawka A, Alexander E, et al. American Thyroid Association Guidelines on the Management of Thyroid Nodules and Differentiated Thyroid Cancer Task Force Review and Recommendation on the Proposed Renaming of Encapsulated Follicular Variant Papillary Thyroid Carcinoma Without Invasion to Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid. 2017; 27(4): 481–483.
  3. Kezlarian B, Lin O. Artificial Intelligence in Thyroid Fine Needle Aspiration Biopsies. Acta Cytol. 2021; 65(4): 324–329.
  4. Jung CK, Bychkov A, Kakudo K. Update from the 2022 World Health Organization Classification of Thyroid Tumors: A Standardized Diagnostic Approach. Endocrinol Metab (Seoul). 2022; 37(5): 703–718.
  5. Macerola E, Poma AM, Vignali P, et al. Molecular Genetics of Follicular-Derived Thyroid Cancer. Cancers (Basel). 2021; 13(5).
  6. Henke LE, Pfeifer JD, Ma C, et al. BRAF mutation is not predictive of long-term outcome in papillary thyroid carcinoma. Cancer Med. 2015; 4(6): 791–799.
  7. Fenton CL. The ret/PTC Mutations Are Common in Sporadic Papillary Thyroid Carcinoma of Children and Young Adults. J Clin Endocrinol Metab. 2000; 85(3): 1170–1175.
  8. Leeman-Neill RJ, Brenner AV, Little MP, et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. 2013; 119(10): 1792–1799.
  9. Yang J, Gong Y, Yan S, et al. Association between TERT promoter mutations and clinical behaviors in differentiated thyroid carcinoma: a systematic review and meta-analysis. Endocrine. 2020; 67(1): 44–57.
  10. Shi X, Liu R, Qu S, et al. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab. 2014; 99(6): E1130–E1136.
  11. Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014; 32(25): 2718–2726.
  12. Chu YH, Dias-Santagata D, Farahani AA, et al. Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC). Mod Pathol. 2020; 33(11): 2186–2197.
  13. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014; 159(3): 676–690.
  14. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011; 7(10): 569–580.
  15. Fagin JA, Wells SA. Biologic and Clinical Perspectives on Thyroid Cancer. N Engl J Med. 2016; 375(11): 1054–1067.
  16. O'Neill CJ, Vaughan L, Learoyd DL, et al. Management of follicular thyroid carcinoma should be individualised based on degree of capsular and vascular invasion. Eur J Surg Oncol. 2011; 37(2): 181–185.
  17. Goffredo P, Roman SA, Sosa JA. Hurthle cell carcinoma: a population-level analysis of 3311 patients. Cancer. 2013; 119(3): 504–511.
  18. Ganly I, Makarov V, Deraje S, et al. Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell. 2018; 34(2): 256–270.e5.
  19. Gopal R, Kübler K, Calvo S, et al. Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell. 2018; 34(2): 242–255.e5.
  20. Tuttle RM, Haugen B, Perrier ND. Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why? Thyroid. 2017; 27(6): 751–756.
  21. SEER Cancer Stat Facts: Thyroid Cancer. National Cancer Institute. Bethesda, MD. https://seer.cancer.gov/statfacts/html/thyro.html.
  22. Filetti S, Durante C, Hartl D, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019; 30(12): 1856–1883.
  23. Jarząb B, Dedecjus M, Lewiński A, et al. Diagnosis and treatment of thyroid cancer in adult patients — Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych — Rekomendacje Polskich Towarzystw Naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]. Endokrynol Pol. 2022; 73(2): 173–300.
  24. Krajewska J, Kukulska A, Oczko-Wojciechowska M, et al. Early Diagnosis of Low-Risk Papillary Thyroid Cancer Results Rather in Overtreatment Than a Better Survival. Front Endocrinol (Lausanne). 2020; 11: 571421.
  25. Ito Y, Miyauchi A, Oda H. Low-risk papillary microcarcinoma of the thyroid: A review of active surveillance trials. Eur J Surg Oncol. 2018; 44(3): 307–315.
  26. Tuttle RM, Fagin JA, Minkowitz G, et al. Natural History and Tumor Volume Kinetics of Papillary Thyroid Cancers During Active Surveillance. JAMA Otolaryngol Head Neck Surg. 2017; 143(10): 1015–1020.
  27. Moon J, Kim Jh, Lee E, et al. Study Protocol of Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro). Endocrinol Metab (Seoul). 2018; 33(2): 278–286.
  28. Sawka AM, Ghai S, Rotstein L, et al. Canadian Thyroid Cancer Active Surveillance Study Group (Greater Toronto Area), Canadian Active Surveillance Study Group (Greater Toronto Area), Canadian Thyroid Cancer Active Surveillance Study Group, Canadian Thyroid Cancer Active Surveillance Study Group. A protocol for a Canadian prospective observational study of decision-making on active surveillance or surgery for low-risk papillary thyroid cancer. BMJ Open. 2018; 8(4): e020298–1007.
  29. Cho SeJ, Suh CH, Baek JH, et al. Active Surveillance for Small Papillary Thyroid Cancer: A Systematic Review and Meta-Analysis. Thyroid. 2019; 29(10): 1399–1408.
  30. Saravana-Bawan B, Bajwa A, Paterson J, et al. Active surveillance of low-risk papillary thyroid cancer: A meta-analysis. Surgery. 2020; 167(1): 46–55.
  31. Papini E, Monpeyssen H, Frasoldati A, et al. 2020 European Thyroid Association Clinical Practice Guideline for the Use of Image-Guided Ablation in Benign Thyroid Nodules. Eur Thyroid J. 2020; 9(4): 172–185.
  32. Mauri G, Hegedüs L, Bandula S, et al. European Thyroid Association and Cardiovascular and Interventional Radiological Society of Europe 2021 Clinical Practice Guideline for the Use of Minimally Invasive Treatments in Malignant Thyroid Lesions. Eur Thyroid J. 2021; 10(3): 185–197.
  33. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006; 91(8): 2892–2899.
  34. Kushchayeva YS, Kushchayev SV, Wexler JA, et al. Current treatment modalities for spinal metastases secondary to thyroid carcinoma. Thyroid. 2014; 24(10): 1443–1455.
  35. Mittica M, Dotto A, Comina M, et al. Cross-sectional and prospective study on anti-Müllerian hormone changes in a cohort of pre-menopausal women with a history of differentiated thyroid cancer. Thyroid Res. 2020; 13: 1.
  36. Cao Qi, Zhu H, Zhang J, et al. Pregnancy Outcomes in Thyroid Cancer Survivors: A Propensity Score-Matched Cohort Study. Front Endocrinol (Lausanne). 2022; 13: 816132.
  37. Brierley J, Sherman E. The role of external beam radiation and targeted therapy in thyroid cancer. Semin Radiat Oncol. 2012; 22(3): 254–262.
  38. Groen AH, van Dijk D, Sluiter W, et al. Postoperative external beam radiotherapy for locoregional control in iodine refractory differentiated thyroid cancer. Eur Thyroid J. 2022; 11(1).
  39. Haddad R, Bischoff L, Bernet V, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) Thyroid Carcinoma. https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf (11.01.2023).
  40. Kiess AP, Agrawal N, Brierley JD, et al. External-beam radiotherapy for differentiated thyroid cancer locoregional control: A statement of the American Head and Neck Society. Head Neck. 2016; 38(4): 493–498.
  41. Cabanillas ME, Ryder M, Jimenez C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr Rev. 2019; 40(6): 1573–1604.
  42. Brose MS, Robinson B, Sherman SI, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021; 22(8): 1126–1138.
  43. Duke ES, Barone AK, Chatterjee S, et al. FDA Approval Summary: Cabozantinib for Differentiated Thyroid Cancer. Clin Cancer Res. 2022; 28(19): 4173–4177.
  44. Roof L, Geiger JL. Clinical Utility of Cabozantinib in the Treatment of Locally Advanced or Metastatic Differentiated Thyroid Carcinoma: Patient Selection and Reported Outcomes. Cancer Manag Res. 2023; 15: 343–350.
  45. Wirth LJ, Sherman E, Robinson B, et al. Efficacy of Selpercatinib in -Altered Thyroid Cancers. N Engl J Med. 2020; 383(9): 825–835.
  46. Naoum GE, Morkos M, Kim B, et al. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018; 17(1): 51.
  47. Giovanella L, Garo ML, Albano D, et al. The role of thyroglobulin doubling time in differentiated thyroid cancer: a meta-analysis. Endocr Connect. 2022; 11(4).



Onkologia w Praktyce Klinicznej - Edukacja