Tom 10, Nr 3 (2024)
Artykuł przeglądowy
Opublikowany online: 2023-10-19
Wyświetlenia strony 221
Wyświetlenia/pobrania artykułu 30
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Sotorasib w leczeniu niedrobnokomórkowego raka płuca — aktualne możliwości i perspektywy

Magdalena Knetki-Wróblewska1, Bartosz Wasąg23
Onkol Prakt Klin Edu 2024;10(3):222-228.

Streszczenie

Gen KRAS bierze udział w regulacji wielu procesów komórkowych, takich jak proliferacja, różnicowanie i przeżycie komórek, regulacja cyklu komórkowego oraz zmiany metaboliczne. Nieprawidłowości w genie KRAS stwierdza się u około 30% chorych z niedrobnokomórkowym rakiem płuca, zwykle o histologii niepłaskonabłonkowej, częściej u osób rasy kaukaskiej, kobiet i palaczy tytoniu. Najczęściej stwierdza się wariant p.G12C. Sotorasib jest pierwszym lekiem zarejestrowanym do leczenia chorych z tej populacji. W badaniu klinicznym III fazy CodeBreak 200 wykazano przewagę sotorasibu nad docetakselem u chorych po niepowodzeniu wcześniejszej immunochemioterapii w zakresie pierwszorzędowego punktu końcowego — mediana czasu przeżycia wolnego od progresji choroby wyniosła 5,6 miesiąca [95% przedział ufności (CI) 4,3–7,8] vs. 4,5 miesiąca (3,0–5,7), współczynnik ryzyka = 0,66 (95% CI 0,51–0,86; p = 0,0017), a odsetek 12-miesięcznych przeżyć wolnych od progresji wyniósł 24,8% dla sotorasibu i 10,1% dla docetakselu. Obecnie monoterapia z użyciem sotorasibu w dawce początkowej 960 mg/dobę jest wskazana do leczenia dorosłych chorych na zaawansowanego niedrobnokomórkowego raka płuca z mutacją KRAS p.G12C, u których doszło do progresji choroby po co najmniej jednej wcześniejszej linii leczenia systemowego. Określenie optymalnego miejsca sotorasibu w algorytmie leczenia systemowego chorych z tej populacji wymaga dalszych badań klinicznych z losowym doborem chorych.

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Hendriks LE, Kerr KM, Menis J, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(4): 339–357.
  2. Hendriks LE, Kerr KM, Menis J, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023; 34(4): 358–376.
  3. Reck M, Carbone DP, Garassino M, et al. Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol. 2021; 32(9): 1101–1110.
  4. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sotorasib-kras-g12c-mutated-nsclc.
  5. https://www.ema.europa.eu/en/documents/product-information/lumykras-epar-product-information_en.pdf.
  6. Chang EH, Gonda MA, Ellis RW, et al. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci U S A. 1982; 79(16): 4848–4852.
  7. Tsai FD, Lopes MS, Zhou Mo, et al. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci U S A. 2015; 112(3): 779–784.
  8. Zhou Y, Hancock JF. Ras nanoclusters: Versatile lipid-based signaling platforms. Biochim Biophys Acta. 2015; 1853(4): 841–849.
  9. Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem. 2011; 80: 943–971.
  10. Welman A, Burger MM, Hagmann J. Structure and function of the C-terminal hypervariable region of K-Ras4B in plasma membrane targetting and transformation. Oncogene. 2000; 19(40): 4582–4591.
  11. Abraham SJ, Muhamed I, Nolet R, et al. Expression, purification, and characterization of soluble K-Ras4B for structural analysis. Protein Expr Purif. 2010; 73(2): 125–131.
  12. Singh K, Groth-Vasselli B, Farnsworth PN, et al. Effect of thiobase incorporation into duplex DNA during the polymerization reaction. Res Commun Mol Pathol Pharmacol. 1996; 94(2): 129–140.
  13. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003; 3(6): 459–465.
  14. Prior IA, Hood FE, Hartley JL. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020; 80(14): 2969–2974.
  15. Dogan S, Shen R, Ang DC, et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res. 2012; 18(22): 6169–6177.
  16. Ellis RW, Defeo D, Shih TY, et al. The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature. 1981; 292(5823): 506–511.
  17. Wood K, Hensing T, Malik R, et al. Prognostic and Predictive Value in KRAS in Non-Small-Cell Lung Cancer: A Review. JAMA Oncol. 2016; 2(6): 805–812.
  18. Martin P, Leighl NB, Tsao MS, et al. KRAS mutations as prognostic and predictive markers in non-small cell lung cancer. J Thorac Oncol. 2013; 8(5): 530–542.
  19. Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer. 2019; 19(9): 495–509.
  20. Della Corte CM, Morgillo F. Rethinking treatment for RET-altered lung and thyroid cancers: selpercatinib approval by the EMA. ESMO Open. 2021; 6(1): 100041.
  21. Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020; 31(11): 1491–1505.
  22. Wolff HB, Steeghs EMP, Mfumbilwa ZA, et al. Cost-Effectiveness of Parallel Versus Sequential Testing of Genetic Aberrations for Stage IV Non-Small-Cell Lung Cancer in the Netherlands. JCO Precis Oncol. 2022; 6: e2200201.
  23. Steeghs EMP, Groen HJM, Schuuring Ed, et al. PATH consortium. Mutation-tailored treatment selection in non-small cell lung cancer patients in daily clinical practice. Lung Cancer. 2022; 167: 87–97.
  24. Dall'Olio FG, Conci N, Rossi G, et al. Comparison of Sequential Testing and Next Generation Sequencing in advanced Lung Adenocarcinoma patients - A single centre experience. Lung Cancer. 2020; 149: 5–9.
  25. Kuang S, Fung AS, Perdrizet KA, et al. Upfront Next Generation Sequencing in Non-Small Cell Lung Cancer. Curr Oncol. 2022; 29(7): 4428–4437.
  26. A Phase 1/2, Study Evaluating the Safety, Tolerability, PK, and Efficacy of Sotorasib (AMG 510) in Subjects With Solid Tumors With a Specific KRAS Mutation (CodeBreaK 100). ClinicalTrials.gov.
  27. Skoulidis F, Li BT, Dy GK, et al. Sotorasib for Lung Cancers with p.G12C Mutation. N Engl J Med. 2021; 384(25): 2371–2381.
  28. Dy GK, Govindan R, Velcheti V, et al. Long-Term Outcomes and Molecular Correlates of Sotorasib Efficacy in Patients With Pretreated G12C-Mutated Non-Small-Cell Lung Cancer: 2-Year Analysis of CodeBreaK 100. J Clin Oncol. 2023; 41(18): 3311–3317.
  29. de Langen AJ, Johnson ML, Mazieres J, et al. CodeBreaK 200 Investigators. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS mutation: a randomised, open-label, phase 3 trial. Lancet. 2023; 401(10378): 733–746.
  30. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015; 373(2): 123–135.
  31. Rittmeyer A, Barlesi F, Waterkamp D, et al. OAK Study Group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017; 389(10066): 255–265.
  32. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016; 387(10027): 1540–1550.
  33. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015; 373(17): 1627–1639.
  34. Awad M, Pelizzari G, Stevenson JP, et al. 989P Sotorasib in advanced KRAS p.G12C-mutated non-small cell lung cancer (NSCLC): Safety and efficacy data from the global expanded access program (EAP). Ann Oncol. 2022; 33: S1005.
  35. Novello S, Maimon N, Stevenson JP, et al. 7MO Sotorasib in KRAS G12C-mutated advanced non-small cell lung cancer (aNSCLC): Overall survival (OS) data from the global expanded access program (EAP study-436). J Thorac Oncol. 2023; 18(4): S40–S41.
  36. Cadranel J, Quantin X, Girard N, et al. 1121P Real-world (RW) data from the sotorasib French pre-market authorization early access program in patients (pts) with KRASG12C driven metastatic non-small cell lung cancer (mNSCLC): Clinical characteristics. Ann Oncol. 2022; 33: S1063–S1064.
  37. Thummalapalli R, Bernstein E, Herzberg B, et al. Clinical and Genomic Features of Response and Toxicity to Sotorasib in a Real-World Cohort of Patients With Advanced -Mutant Non-Small Cell Lung Cancer. JCO Precis Oncol. 2023; 7: e2300030.
  38. Negrao MV, Araujo HA, Lamberti G, et al. Comutations and KRASG12C Inhibitor Efficacy in Advanced NSCLC. Cancer Discov. 2023; 13(7): 1556–1571.
  39. https://www.ema.europa.eu/en/documents/product-information/lumykras-epar-product-information_pl.pdf.
  40. Chmielewska I, Krawczyk P, Grenda A, et al. Breaking the 'Undruggable' Barrier: Anti-PD-1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer Patients with Mutations-A Comprehensive Review and Description of Single Site Experience. Cancers (Basel). 2023; 15(14).
  41. Knetki-Wróblewska M, Tabor S, Płużański A, et al. Efficacy of Immunotherapy in Second-Line Treatment of -Mutated Patients with Non-Small-Cell Lung Cancer-Data from Daily Practice. Curr Oncol. 2022; 30(1): 462–475.
  42. Landre T, Justeau G, Assié JB, et al. Anti-PD-(L)1 for KRAS-mutant advanced non-small-cell lung cancers: a meta-analysis of randomized-controlled trials. Cancer Immunol Immunother. 2022; 71(3): 719–726.
  43. Guo X, Du He, Li J, et al. Efficacy of ICIs on patients with oncogene-driven non-small cell lung cancer: a retrospective study. Cancer Drug Resist. 2022; 5(1): 15–24.
  44. Mazieres J, Drilon A, Lusque A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019; 30(8): 1321–1328.
  45. Nakajima E, Ren Yi, Vallejo J, et al. Outcomes of first-line immune checkpoint inhibitors with or without chemotherapy according to KRAS mutational status and PD-L1 expression in patients with advanced NSCLC: FDA pooled analysis. J Clin Oncol. 2022; 40(16_suppl): 9001–9001.
  46. https://clinicaltrials.gov/study/NCT05920356?cond=nsclc&intr=sotorasib&page=1&rank=4.
  47. https://clinicaltrials.gov/study/NCT04933695?cond=nsclc&intr=sotorasib&page=1&rank=3.
  48. Desai A, Rakshit S, Bansal R, et al. Time from immune checkpoint inhibitor to sotorasib use correlates with risk of hepatotoxicity in non-small cell lung cancer: A brief report. Cancer Treat Res Commun. 2023; 36: 100743.



Onkologia w Praktyce Klinicznej - Edukacja