Tom 9, Nr 4 (2023)
Artykuł przeglądowy
Opublikowany online: 2022-09-01
Pobierz cytowanie

Rozpoznanie i leczenie mięsaków prążkowanokomórkowych

Michał Łomiak12, Tomasz Świtaj1, Mateusz Spałek1, Joanna Radzikowska3, Marzanna Chojnacka4, Sławomir Falkowski1, Michał Wągrodzki5, Wojciech Kukwa3, Anna Szumera-Ciećkiewicz5, Piotr Rutkowski1, Anna M. Czarnecka1
Onkol Prakt Klin Edu 2023;9(4):264-294.
Afiliacje
  1. Klinika Nowotworów Tkanek Miękkich, Kości i Czerniaków, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  2. Wydział Lekarski, Warszawski Uniwersytet Medyczny, Warszawa
  3. Klinika Otorynolaryngologii, Wydział Lekarsko-Dentystyczny, Warszawski Uniwersytet Medyczny, Warszawa
  4. Klinika Onkologii i Radioterapii, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie
  5. Zakład Patomorfologii Nowotworów, Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie — Państwowy Instytut Badawczy w Warszawie

dostęp płatny

Tom 9, Nr 4 (2023)
PRACE PRZEGLĄDOWE (REVIEW ARTICLES)
Opublikowany online: 2022-09-01

Streszczenie

Mięśniakomięsak prążkowanokomórkowy (RMS) należy do mięsaków tkanek miękkich. Guz pierwotny najczęściej zlokalizowany jest w rejonie głowy i szyi, układu moczowo-płciowego oraz kończyn. Klasyfikacja Światowej Organizacji Zdrowia wyodrębniła cztery podtypy histopatologiczne RMS: zarodkowy, pęcherzykowy, pleomorficzny oraz wrzecionowatokomórkowy/ szkliwiejący. Diagnostyka różnicowa RMS obejmuje czerniaka, złośliwy nowotwór z osłonek nerwów obwodowych, tłuszczakomięsaka oraz PEComa. Do typowych zmian cytogenetycznych w RMS zalicza się translokacje chromosomowe t(2;13)(q35;q14) oraz t(1;13)(p36;q14). Prowadzą one do powstania genów fuzyjnych, które cechuje wartość prognostyczna. W przebiegu RMS obecne mogą być także zmiany w szlakach sygnałowych, do których należą: RAS-PI3K, Wnt/b-katenina, ścieżki receptorów kinaz tyrozynowych i regulacji miogenezy. U 30% chorych w momencie rozpoznania RMS stwierdza się obecność przerzutów odległych, najczęściej do płuc, węzłów chłonnych, kości i szpiku kostnego. Leczenie chorych na RMS wymaga podejścia wielodyscyplinarnego, a wciąż doskonalone techniki diagnostyczne przyczyniają się do indywidualizacji strategii terapeutycznych. Optymalne leczenie RMS w postaci zlokalizowanej bazuje na chirurgii skojarzonej z radioterapią i chemioterapią. W przypadku obecności przerzutów odległych, podstawową metodę terapeutyczną stanowi wielolekowa chemioterapia, najczęściej oparta na: winkrystynie, daktynomycynie, ifosfamidzie/cyklofosfamidzie i etopozydzie. Pomimo intensywnego leczenia, wskaźnik 5-letniego przeżycia u dorosłych chorych na RMS nie przekracza 50%. Wciąż brakuje jednoznacznych wytycznych dotyczących postępowania u chorych z nawrotem miejscowym bądź odległym.

Streszczenie

Mięśniakomięsak prążkowanokomórkowy (RMS) należy do mięsaków tkanek miękkich. Guz pierwotny najczęściej zlokalizowany jest w rejonie głowy i szyi, układu moczowo-płciowego oraz kończyn. Klasyfikacja Światowej Organizacji Zdrowia wyodrębniła cztery podtypy histopatologiczne RMS: zarodkowy, pęcherzykowy, pleomorficzny oraz wrzecionowatokomórkowy/ szkliwiejący. Diagnostyka różnicowa RMS obejmuje czerniaka, złośliwy nowotwór z osłonek nerwów obwodowych, tłuszczakomięsaka oraz PEComa. Do typowych zmian cytogenetycznych w RMS zalicza się translokacje chromosomowe t(2;13)(q35;q14) oraz t(1;13)(p36;q14). Prowadzą one do powstania genów fuzyjnych, które cechuje wartość prognostyczna. W przebiegu RMS obecne mogą być także zmiany w szlakach sygnałowych, do których należą: RAS-PI3K, Wnt/b-katenina, ścieżki receptorów kinaz tyrozynowych i regulacji miogenezy. U 30% chorych w momencie rozpoznania RMS stwierdza się obecność przerzutów odległych, najczęściej do płuc, węzłów chłonnych, kości i szpiku kostnego. Leczenie chorych na RMS wymaga podejścia wielodyscyplinarnego, a wciąż doskonalone techniki diagnostyczne przyczyniają się do indywidualizacji strategii terapeutycznych. Optymalne leczenie RMS w postaci zlokalizowanej bazuje na chirurgii skojarzonej z radioterapią i chemioterapią. W przypadku obecności przerzutów odległych, podstawową metodę terapeutyczną stanowi wielolekowa chemioterapia, najczęściej oparta na: winkrystynie, daktynomycynie, ifosfamidzie/cyklofosfamidzie i etopozydzie. Pomimo intensywnego leczenia, wskaźnik 5-letniego przeżycia u dorosłych chorych na RMS nie przekracza 50%. Wciąż brakuje jednoznacznych wytycznych dotyczących postępowania u chorych z nawrotem miejscowym bądź odległym.

Pobierz cytowanie

Słowa kluczowe

mięśniakomięsak prążkowanokomórkowy; mięsak; mięsaki tkanek miękkich; RMS; RAS; translokacja

Informacje o artykule
Tytuł

Rozpoznanie i leczenie mięsaków prążkowanokomórkowych

Czasopismo

Onkologia w Praktyce Klinicznej - Edukacja

Numer

Tom 9, Nr 4 (2023)

Typ artykułu

Artykuł przeglądowy

Strony

264-294

Opublikowany online

2022-09-01

Wyświetlenia strony

612

Wyświetlenia/pobrania artykułu

112

Rekord bibliograficzny

Onkol Prakt Klin Edu 2023;9(4):264-294.

Słowa kluczowe

mięśniakomięsak prążkowanokomórkowy
mięsak
mięsaki tkanek miękkich
RMS
RAS
translokacja

Autorzy

Michał Łomiak
Tomasz Świtaj
Mateusz Spałek
Joanna Radzikowska
Marzanna Chojnacka
Sławomir Falkowski
Michał Wągrodzki
Wojciech Kukwa
Anna Szumera-Ciećkiewicz
Piotr Rutkowski
Anna M. Czarnecka

Referencje (231)
  1. Ceyssens S, Stroobants S. Sarcoma. Methods Mol Biol. 2011; 727: 191–203.
  2. Agaram NP. Update on Myogenic Sarcomas. Surg Pathol Clin. 2019; 12(1): 51–62.
  3. Rudzinski ER, Anderson JR, Hawkins DS, et al. The World Health Organization Classification of Skeletal Muscle Tumors in Pediatric Rhabdomyosarcoma: A Report From the Children's Oncology Group. Arch Pathol Lab Med. 2015; 139(10): 1281–1287.
  4. Gerber NK, Wexler LH, Singer S, et al. Adult rhabdomyosarcoma survival improved with treatment on multimodality protocols. Int J Radiat Oncol Biol Phys. 2013; 86(1): 58–63.
  5. Elsebaie MAT, Amgad M, Elkashash A, et al. Management of Low and Intermediate Risk Adult Rhabdomyosarcoma: A Pooled Survival Analysis of 553 Patients. Sci Rep. 2018; 8(1): 9337.
  6. Liu YT, Wang CW, Hong RL, et al. Prognostic Factors and Treatment Outcomes of Adult Patients With Rhabdomyosarcoma After Multimodality Treatment. Anticancer Res. 2019; 39(3): 1355–1364.
  7. Noujaim J, et al. Adult Pleomorphic Rhabdomyosarcoma: A Multicentre Retrospective Study. Anticancer Res. 2015; 35(11): 6213–6217.
  8. Hortobágyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs. 1997; 54(Suppl 4): 1–7.
  9. Wojciechowska U. A.U.J.D.. Cancer in Poland in 2012. Cancer in Poland in 2012. 2013; 63(3): 197–216.
  10. ESMO / European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012; 23 Suppl 7: vii92–vii99.
  11. Stiller CA, et al. Descriptive epidemiology of sarcomas in Europe: report from the RARECARE project. Eur J Cancer. 2013; 49(3): 684–695.
  12. Alkhormi AM, et al. Primary duodenal embryonal rhabdomyosarcoma in adults: a case report. AME Case Rep. 2019; 3: 29.
  13. Sultan I, Qaddoumi I, Yaser S, et al. Comparing adult and pediatric rhabdomyosarcoma in the surveillance, epidemiology and end results program, 1973 to 2005: an analysis of 2,600 patients. J Clin Oncol. 2009; 27(20): 3391–3397.
  14. Esnaola N, Rubin B, Baldini E, et al. Response to Chemotherapy and Predictors of Survival in Adult Rhabdomyosarcoma. Ann Surg. 2001; 234(2): 215–223.
  15. Diller L, Sexsmith E, Gottlieb A, et al. Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest. 1995; 95(4): 1606–1611.
  16. Kratz C, Rapisuwon S, Reed H, et al. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am J Med Genet C Semin Med Genet. 2011; 157(2): 83–89.
  17. Russo I, Paolo VDi, Gurnari C, et al. Congenital Rhabdomyosarcoma: a different clinical presentation in two cases. BMC Pediatrics. 2018; 18(1).
  18. Lee YC. Congenital Eyelid Rhabdomyosarcoma. Ophthalmic Plast Reconstr Surg. 2016; 32(5): e104–e106.
  19. Yang P, Grufferman S, Khoury MJ, et al. Association of childhood rhabdomyosarcoma with neurofibromatosis type i and birth defects. Genetic Epidemiology. 2005; 12(5): 467–474.
  20. Grufferman S, Ruymann F, Ognjanovic S, et al. Prenatal X-ray exposure and rhabdomyosarcoma in children: a report from the children's oncology group. Cancer Epidemiol Biomarkers Prev. 2009; 18(4): 1271–1276.
  21. Grufferman S, et al. Parents' use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control. 1993; 4(3): 217–224.
  22. Lupo PJ, Danysh HE, Skapek SX, et al. Maternal and birth characteristics and childhood rhabdomyosarcoma: a report from the Children's Oncology Group. Cancer Causes Control. 2014; 25(7): 905–913.
  23. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2010; 18(1): 8–14.
  24. Estep AL, Tidyman WE, Teitell MA, et al. HRAS mutations in Costello syndrome: detection of constitutional activating mutations in codon 12 and 13 and loss of wild-type allele in malignancy. Am J Med Genet A. 2006; 140(1): 8–16.
  25. Doros L, Yang J, Dehner L, et al. DICER1 mutations in embryonal rhabdomyosarcomas from children with and without familial PPB-tumor predisposition syndrome. Pediatr Blood Cancer. 2012; 59(3): 558–560.
  26. Hartley AL. Neurofibromatosis in children with soft tissue sarcoma. Pediatric hematology and oncology. 1988; 5(1): 7–16.
  27. Choi JS, Choi JS, Kim EJ. Primary pulmonary rhabdomyosarcoma in an adult with neurofibromatosis-1. Ann Thorac Surg. 2009; 88(4): 1356–1358.
  28. Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet. 2017; 91(4): 507–519.
  29. Boot MV, van Belzen MJ, Overbeek LI, et al. Benign and malignant tumors in Rubinstein-Taybi syndrome. Am J Med Genet A. 2018; 176(3): 597–608.
  30. Kleinerman RA, Tucker MA, Abramson DH, et al. Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J Natl Cancer Inst. 2007; 99(1): 24–31.
  31. Cajaiba M, Bale A, Alvarez-Franco M, et al. Rhabdomyosarcoma, Wilms tumor, and deletion of the patched gene in Gorlin syndrome. Nature Clinical Practice Oncology. 2006; 3(10): 575–580.
  32. Hahn H, Wojnowski L, Zimmer A, et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nature Medicine. 1998; 4(5): 619–622.
  33. Innes A, Chudley A. Rhabdomyosarcoma in a Patient With Cardio–Facio–Cutaneous Syndrome. J Pediatr Hematol Oncol. 2000; 22(6): 546.
  34. Skapek SX, et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019; 5(1): 1.
  35. Linardic CM, Naini S, Herndon JE, et al. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res. 2007; 67(14): 6691–6699.
  36. Keller C, Arenkiel BR, Coffin CM, et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 2004; 18(21): 2614–2626.
  37. Drummond CJ, et al. Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors. Cancer Cell. 2018; 33(1): 108–124.e5.
  38. Ruiz-Mesa C, Goldberg J, Munoz AC, et al. Rhabdomyosarcoma in Adults: New Perspectives on Therapy. Curr Treat Options Oncol. 2015; 16(6).
  39. Casey DL, et al. Genomic Determinants of Clinical Outcomes in Rhabdomyosarcoma. Clin Cancer Res. 2020; 26(5): 1135–1140.
  40. Sorensen PHB, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol. 2002; 20(11): 2672–2679.
  41. Davicioni E, Anderson JR, Buckley JD, et al. Gene expression profiling for survival prediction in pediatric rhabdomyosarcomas: a report from the children's oncology group. J Clin Oncol. 2010; 28(7): 1240–1246.
  42. Bennicelli JL, Edwards RH, Barr FG. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A. 1996; 93(11): 5455–5459.
  43. Davis RJ, Barr FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A. 1997; 94(15): 8047–8051.
  44. Thalhammer V, Lopez-Garcia LA, Herrero-Martin D, et al. PLK1 phosphorylates PAX3-FOXO1, the inhibition of which triggers regression of alveolar Rhabdomyosarcoma. Cancer Res. 2015; 75(1): 98–110.
  45. Paulino AC, Okcu MF. Rhabdomyosarcoma. Curr Probl Cancer. 2008; 32(1): 7–34.
  46. Gryder BE, Yohe ME, Chou HC, et al. PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability. Cancer Discov. 2017; 7(8): 884–899.
  47. Böhm M, Wachtel M, Marques JG, et al. Helicase CHD4 is an epigenetic coregulator of PAX3-FOXO1 in alveolar rhabdomyosarcoma. J Clin Invest. 2016; 126(11): 4237–4249.
  48. Taulli R, et al. Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res. 2006; 66(9): 4742–4749.
  49. Reichek JL, Duan F, Smith LM, et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Clin Cancer Res. 2011; 17(6): 1463–1473.
  50. Barr FG, Duan F, Smith LM, et al. Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Genes Chromosomes Cancer. 2009; 48(8): 661–672.
  51. Borinstein SC. Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr Blood Cancer. 2018; 65(2).
  52. Dziuba I, Kurzawa P, Dopierała M, et al. Rhabdomyosarcoma in children - current pathologic and molecular classification. Pol J Pathol. 2018; 69(1): 20–32.
  53. Mitelman F, Mertens F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. 2015. http://cgap.nci.nih.gov/Chromosomes/Mitelman.
  54. Parham DM, Barr FG. Sceletal Muscle Tumours. In: Fletcher CDM, Unni KK, Mertens F. ed. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.
  55. Radzikowska J. Rhabdomyosarcoma of the head and neck in children. Contemp Oncol (Pozn). 2015; 19(2): 98–107.
  56. Dasgupta R, Fuchs J, Rodeberg D. Rhabdomyosarcoma. Semin Pediatr Surg. 2016; 25(5): 276–283.
  57. Shern JF, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014; 4(2): 216–231.
  58. Gordon A, McManus A, Anderson J, et al. Chromosomal imbalances in pleomorphic rhabdomyosarcomas and identification of the alveolar rhabdomyosarcoma-associated PAX3-FOXO1A fusion gene in one case. Cancer Genetics and Cytogenetics. 2003; 140(1): 73–77.
  59. Hettmer S, Archer N, Somers G, et al. Anaplastic rhabdomyosarcoma inTP53germline mutation carriers. Cancer. 2013; 120(7): 1068–1075.
  60. Leiner J, Le Loarer F. The current landscape of rhabdomyosarcomas: an update. Virchows Arch. 2020; 476(1): 97–108.
  61. Watson S, Perrin V, Guillemot D, et al. Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol. 2018; 245(1): 29–40.
  62. Alaggio R, et al. A Molecular Study of Pediatric Spindle and Sclerosing Rhabdomyosarcoma: Identification of Novel and Recurrent VGLL2-related Fusions in Infantile Cases. Am J Surg Pathol. 2016; 40(2): 224–235.
  63. Agaram N, LaQuaglia M, Alaggio R, et al. MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Modern Pathology. 2018; 32(1): 27–36.
  64. Kohsaka S, Shukla N, Ameur N, et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet. 2014; 46(6): 595–600.
  65. Agaram NP. Expanding the Spectrum of Intraosseous Rhabdomyosarcoma: Correlation Between 2 Distinct Gene Fusions and Phenotype. Am J Surg Pathol. 2019; 43(5): 695–702.
  66. Chrisinger JSA, Wehrli B, Dickson BC, et al. Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases. Virchows Arch. 2020; 477(5): 725–732.
  67. Dashti NK, Wehrs RN, Thomas BC, et al. Spindle cell rhabdomyosarcoma of bone with FUS-TFCP2 fusion: confirmation of a very recently described rhabdomyosarcoma subtype. Histopathology. 2018; 73(3): 514–520.
  68. Wong DD, van Vliet C, Gaman A, et al. Rhabdomyosarcoma with FUS re-arrangement: additional case in support of a novel subtype. Pathology. 2019; 51(1): 116–120.
  69. Tagami Y, et al. Spindle cell rhabdomyosarcoma in a lumbar vertebra with FUS-TFCP2 fusion. Pathol Res Pract. 2019; 215(8): 152399.
  70. Le Loarer F, Cleven AHG, Bouvier C, et al. A subset of epithelioid and spindle cell rhabdomyosarcomas is associated with TFCP2 fusions and common ALK upregulation. Mod Pathol. 2020; 33(3): 404–419.
  71. Leuschner I, et al. Spindle Cell Variants of Embryonal Rhabdomyosarcoma in the Paratesticular Region. Am J Surg Pathol. 1993; 17(8): 858.
  72. Shukla N, Ameur N, Yilmaz I, et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res. 2012; 18(3): 748–757.
  73. Stewart E, et al. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018; 34(3): 411–426.e19.
  74. Martinelli S, McDowell H, Vigne S, et al. RAS signaling dysregulation in human embryonal Rhabdomyosarcoma. Genes, Chromosomes and Cancer. 2009; 48(11): 975–982.
  75. Seki M, Nishimura R, Yoshida K, et al. Abstract 482: Integrated genetic and epigenetic analysis defines novel molecular clusters in rhabdomyosarcoma. Tumor Biology. 2015.
  76. Cao L, Yu Y, Bilke S, et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res. 2010; 70(16): 6497–6508.
  77. Bridge JA, Liu J, Qualman SJ, et al. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer. 2002; 33(3): 310–321.
  78. Ganti R, Skapek SX, Zhang J, et al. Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonal rhabdomyosarcoma. Mod Pathol. 2006; 19(9): 1213–1220.
  79. Mark HF, Brown S, Sun CL, et al. Fluorescent in situ hybridization detection of HER-2/neu gene amplification in rhabdomyosarcoma. Pathobiology. 1998; 66(2): 59–63.
  80. Taniguchi E, et al. PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene. 2008; 27(51): 6550–6560.
  81. Sharma P, Lioutas A, Fernandez-Fuentes N, et al. Arginine citrullination at the C-terminal domain controls RNA polymerase II transcription. Mol Cell. 2019; 73(1): 84–96.e7.
  82. Naini S, et al. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res. 2008; 68(23): 9583–9588.
  83. Hayes MN, Langenau DM. Discovering novel oncogenic pathways and new therapies using zebrafish models of sarcoma. Methods Cell Biol. 2017; 138: 525–561.
  84. Huynh K, Fischle W, Verdin E, et al. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000; 14(14): 1810–1823.
  85. Cortes Barrantes P, Jakobiec FA, Dryja TP. A Review of the Role of Cytogenetics in the Diagnosis of Orbital Rhabdomyosarcoma. Semin Ophthalmol. 2019; 34(4): 243–251.
  86. Huang HJ, Li XO, Zhong DR. Nasal cavity and paranasal sinus rhabdomyosarcoma:a clinicopathological and immunohistochemistry characteristics study of fifteen cases. Zhonghua Bing Li Xue Za Zhi. 2019; 48(11): 884–886.
  87. Torres-Peña JL, Ramos Castrillo AI, Mencía-Gutiérrez E, et al. Nasal Cavity or Alveolar Paranasal Sinus Rhabdomyosarcoma with Orbital Extension in Adults: 2 Cases. Plast Reconstr Surg Glob Open. 2015; 3(6): e414.
  88. Purkayastha A, Sarin A, Bhatnagar S, et al. Adult Alveolar Paranasal Rhabdomyosarcoma; A Rare Aggressive Disease with Pulmonary, Brain and Skeletal Metastasis: Review of an Institutional Experience. Review of an Institutional Experience. SAJ Cancer Sci 5. 2018; 101.
  89. Campo M, Flamarique S, Asin G, et al. Multidisciplinary approach of a locally advanced adult alveolar rhabdomyosarcoma of paranasal sinuses: a case report and literature review. Rhinology Online. 2018; 1(1): 104–107.
  90. Kanagalingam J, Medcalf M, Courtauld E, et al. Rhabdomyosarcoma of the Adult Nasopharynx. ORL. 2002; 64(3): 233–236.
  91. Warner BM, Griffith CC, Taylor WD, et al. Sclerosing rhabdomyosarcoma: presentation of a rare sarcoma mimicking myoepithelial carcinoma of the parotid gland and review of the literature. Head Neck Pathol. 2015; 9(1): 147–152.
  92. Febrero B, Oviedo I, Ríos A, et al. Primary rhabdomyosarcoma of the thyroid in an adult with auricular thrombosis. Eur Ann Otorhinolaryngol Head Neck Dis. 2017; 134(1): 49–51.
  93. McInturff M, Adamson A, Donaldson C, et al. Embryonal Rhabdomyosarcoma of the Oral Cavity. Head Neck Pathol. 2016; 11(3): 385–388.
  94. Aggarwal A, Singh V, Pandey S, et al. Embryonal rhabdomyosarcoma of urinary bladder in an adult patient: an unusual manifestation. BMJ Case Rep. 2018; 2018: bcr2018224255.
  95. Schildhaus HU, Lokka S, Fenner W, et al. Spindle cell embryonal rhabdomyosarcoma of the prostate in an adult patient - case report and review of clinicopathological features. Diagn Pathol. 2016; 11(1): 56.
  96. Townsend MF. Ureteral rhabdomyosarcoma. Urology. 1999; 54(3): 561.
  97. Alavi S, Eckes L, Kratschell R, et al. Pleomorphic Rhabdomyosarcoma of the Uterus - Case Report and a Systematic Review of the Literature. Anticancer Res. 2017; 37(5): 2509–2514.
  98. Alkhaledi A, Hanafi I, Alsabe H, et al. Rhabdomyosarcoma of the uterus with multiple metastases in a post-menopausal woman. Oxf Med Case Reports. 2019; 2019(3): omz017.
  99. Issam L, Sana L, Ismail E, et al. Vaginal embryonal rhabdomyosarcoma in young woman: A case report and literature review. Archives of Cancer Science and Therapy. 2020; 4(1): 034–037.
  100. Gong W, Gao Q, Xu Z, et al. Giant intrascrotal embryonal rhabdomyosarcoma in an adult: a case report and review of the literature. J Med Case Rep. 2018; 12(1): 149.
  101. Breitfeld PP, Meyer WH. Rhabdomyosarcoma: new windows of opportunity. Oncologist. 2005; 10(7): 518–527.
  102. Lawrence Jr W, Anderson JR, Gehan EA. Pretreatment TNM staging of childhood rhabdomyosarcoma: a report of the Intergroup Rhabdomyosarcoma Study Group. Children's Cancer Study Group. Pediatric Oncology Group. Cancer. 1997; 80(6): 1165–1170.
  103. Yin J, Liu Z, Yang K. Pleomorphic rhabdomyosarcoma of the liver with a hepatic cyst in an adult: Case report and literature review. Medicine (Baltimore). 2018; 97(29): e11335.
  104. Kim DoY, Seol YMi, Kim H, et al. Primary rhabdomyosarcoma of the breast in a 17-year-old girl: Case report. Medicine (Baltimore). 2017; 96(49): e9076.
  105. Kallianpur AA, Shukla NK, Deo SVS, et al. Primary mammary rhabdomyosarcoma in a nineteen year old female: A case report and review of literature. Indian J Cancer. 2015; 52(3): 295–296.
  106. Motola-Kuba D, M.-N. I, Fernandez-Ferreira R. Primary mediastinal embryonal rhabdomyosarcoma in adult: literature review and a case report. Journal of Cancer Biology & Research. 2018.
  107. Ammar-Boukhris A, Kamoun-Sellami N, Chtourou A, et al. Endobronchial pulmonary rhabdomyosarcoma. A case report. Rev Pneumol Clin. 2002; 58(5 Pt 1): 286–289.
  108. Ji Gy, Mao H. Primary pulmonary rhabdomyosarcoma in an adult: a case report and review of the literature. J Zhejiang Univ Sci B. 2013; 14(9): 859–865.
  109. Suda H, Koga N, Ohteki H. A case report of primary rhabdomyosarcoma of the heart treated with mitral valve replacement. Kyobu Geka. 1992; 45(13): 1183–1186.
  110. DeLuca WM, Soderberg Jr CH, Riley RS, et al. Soliditary rhabdomyosarcoma of the pericardium: a case report and pathologic discussion. R I Med J. 1980; 63(3): 79–83.
  111. Medeiros CW, Kondo W, Baptista I, et al. Primary rhabdomyosarcoma of the diaphragm: case report and literature review. Rev Hosp Clin Fac Med Sao Paulo. 2002; 57(2): 67–72.
  112. Kuwabara T, Morioka H, Maki A, et al. The retroperitoneal rhabdomyosarcoma: a case report. Hinyokika Kiyo. 1990; 36(4): 433–436.
  113. Yu L, Yang SJ. Spindle cell rhabdomyosarcoma of the retroperitoneum: an unusual case developed in a pregnant woman but obscured by pregnancy. Int J Clin Exp Pathol. 2014; 7(8): 4904–4912.
  114. Shah R, Sabanathan S, Okereke CD, et al. Rhabdomyosarcoma of the oesophagus. A case report. J Cardiovasc Surg (Torino). 1995; 36(1): 99–100.
  115. Palermo M, Mastronardi LM, García RH, et al. Primary gastric rhabdomyosarcoma. Case report. Acta Gastroenterol Latinoam. 2012; 42(2): 131–134.
  116. Damiani S, Nappi O, Eusebi V. Primary rhabdomyosarcoma of the ileum in an adult. Arch Pathol Lab Me. 1991; 115(3): 235–238.
  117. Karcioglu Z, Hadjistilianou D, Rozans M, et al. Orbital Rhabdomyosarcoma. Cancer Control. 2017; 11(5): 328–333.
  118. Sharada S. Adult Rhabdomyosarcoma: A Rare Case Report and the Associated Challenges. Journal of Clinical and Experimental Ophthalmology. 2020; 11(3).
  119. Ahmad TY, Al Houri HN, Al Houri AN, et al. Aggressive orbital rhabdomyosarcoma in adulthood: A case report in a public hospital in Damascus, Syria. Avicenna J Med. 2018; 8(3): 110–113.
  120. Dilger AE, S AL, Cramer J, et al. Rhabdomyosarcoma of the Paranasal Sinuses Initially Diagnosed as Acute Sinusitis. Sinusitis. 2017.
  121. Kariya S, Cureoglu S, Schachern P, et al. Histopathological temporal bone study of the metastatic rhabdomyosarcoma. Auris Nasus Larynx. 2009; 36(2): 221–223.
  122. Ormeci T, Durmus O, Saral I, et al. Persistent abdominal pain after exercise: an unexpected diagnosis. Acta Reumatol Port. 2015; 40(2): 195–197.
  123. Kam J, Yuminaga Y, Maclean F, et al. Rapidly growing massive pleomorphic rhabdomyosarcoma of the bladder presenting with bladder outlet obstruction. ANZ J Surg. 2018; 88(3): E208–E209.
  124. Aldabagh SM, Shibata CS, Taxy JB. Rhabdomyosarcoma of the common bile duct in an adult. Arch Pathol Lab Med. 1986; 110(6): 547–550.
  125. Xi S, Tong W. Pleomorphic rhabdomyosarcoma metastasis to small intestine causing intussusception: A case report. Medicine (Baltimore). 2018; 97(51): e13648.
  126. Yadav SK, Sinha DK, Ahmed A, et al. Primary Intra-Abdominal Rhabdomyosarcoma in an Adult: an Unusual Presentation and Review of Literature. Indian J Surg Oncol. 2015; 6(2): 119–122.
  127. Oberlin O, Rey A, Lyden E, et al. Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol. 2008; 26(14): 2384–2389.
  128. Tallroth K. Lymphatic dissemination of bone and soft tissue sarcomas: a lymphographic investigation. Acta Radiol Suppl. 1976; 349: 1–84.
  129. Saboo S, Krajewski K, Zukotynski K, et al. Imaging Features of Primary and Secondary Adult Rhabdomyosarcoma. American Journal of Roentgenology. 2012; 199(6): W694–W703.
  130. Luporsi M, Cassou-Mounat T, Amiot HM, et al. Rhabdomyosarcoma Revealed by a Breast Metastasis. Clinical Nuclear Medicine. 2018; 43(3): e98–e100.
  131. Dasgupta R, Rodeberg DA. Update on rhabdomyosarcoma. Semin Pediatr Surg. 2012; 21(1): 68–78.
  132. Newton W, Gehan E, Webber B, et al. Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification-an intergroup rhabdomyosarcoma study. Cancer. 1995; 76(6): 1073–1085, doi: 10.1002/1097-0142(19950915)76:6<1073::aid-cncr2820760624>3.0.co;2-l.
  133. Hawkins DS, Gupta AA, Rudzinski ER. What is new in the biology and treatment of pediatric rhabdomyosarcoma? Curr Opin Pediatr. 2014; 26(1): 50–56.
  134. Rekhi B, Gupta C, Chinnaswamy G, et al. Clinicopathologic features of 300 rhabdomyosarcomas with emphasis upon differential expression of skeletal muscle specific markers in the various subtypes: A single institutional experience. Ann Diagn Pathol. 2018; 36: 50–60.
  135. Folpe AL, Graham RP, Martinez A, et al. Mesenchymal chondrosarcomas showing immunohistochemical evidence of rhabdomyoblastic differentiation: a potential diagnostic pitfall. Hum Pathol. 2018; 77: 28–34.
  136. Xia SJ, Pressey JG, Barr FG. Molecular pathogenesis of rhabdomyosarcoma. Cancer Biol Ther. 2002; 1(2): 97–104.
  137. Sumegi J, Streblow R, Frayer R, et al. Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonicalPAX-FOXO1fusePAX3to members of the nuclear receptor transcriptional coactivator family. Genes, Chromosomes and Cancer. 2009; 49(3): 224–236.
  138. Folpe AL, Hill CE, Parham DM, et al. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing's sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol. 2000; 24(12): 1657–1662.
  139. Brohl AS, Kahen E, Yoder SJ, et al. The genomic landscape of malignant peripheral nerve sheath tumors: diverse drivers of Ras pathway activation. Sci Rep. 2017; 7(1): 14992.
  140. Agaram N, Sung YS, Zhang L, et al. Dichotomy of Genetic Abnormalities in PEComas With Therapeutic Implications. American Journal of Surgical Pathology. 2015; 39(6): 813–825.
  141. Sangiorgio V, Daniele L, Gallo T, et al. Ultrasound-guided fine needle aspiration cytology in the diagnosis of hepatic and pancreatic perivascular epithelioid cell tumors: A case series. Diagn Cytopathol. 2019; 47(4): 315–319.
  142. Thway K, Noujaim J, Jones RL, et al. Dermatofibrosarcoma protuberans: pathology, genetics, and potential therapeutic strategies. Ann Diagn Pathol. 2016; 25: 64–71.
  143. Larbcharoensub N, Kayankarnnavee J, Sanpaphant S, et al. Clinicopathological features of dermatofibrosarcoma protuberans. Oncol Lett. 2016; 11(1): 661–667.
  144. Ferrari A, Dileo P, Casanova M, et al. Rhabdomyosarcoma in adults. A retrospective analysis of 171 patients treated at a single institution. Cancer. 2003; 98(3): 571–580.
  145. Parham DM, B FG, Fletcher CDM, et al. Alveolar rhabdomyosarcoma WHO Classification of Tumours of Soft Tissue and Bone. IARC, Lyon 2013.
  146. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013; 20(6): 387–397.
  147. Bompas E, Campion L, Italiano A, et al. Outcome of 449 adult patients with rhabdomyosarcoma: an observational ambispective nationwide study. Cancer Med. 2018; 7(8): 4023–4035.
  148. Parham DM, B FG, Fletcher CDM, et al. Embryonal rhabdomyosarcoma. WHO Classification of Tumours of Soft Tissue and Bone. IARC, Lyon 2013.
  149. Rudzinski E, Teot L, Anderson J, et al. Dense Pattern of Embryonal Rhabdomyosarcoma, a Lesion Easily Confused With Alveolar Rhabdomyosarcoma. American Journal of Clinical Pathology. 2013; 140(1): 82–90.
  150. Qualman S, et al. revalence and clinical impact of anaplasia in childhood rhabdomyosarcoma : a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Cancer. 2008; 113(11): 3242–3247.
  151. Kodet R, Newton Jr WA, Hamoudi AB, et al. Childhood rhabdomyosarcoma with anaplastic (pleomorphic) features. A report of the Intergroup Rhabdomyosarcoma Study. Am J Surg Pathol. 1993; 17(5): 443–453.
  152. Goldblum JR, F AL, Weiss SW. Enzinger and Weiss’s Soft Tissue Tumors. Elsevier Saunders, Philadelphia 2014: 601–638.
  153. Dias P, Chen B, Dilday B, et al. Strong Immunostaining for Myogenin in Rhabdomyosarcoma Is Significantly Associated with Tumors of the Alveolar Subclass. Am J Pathol. 2000; 156(2): 399–408.
  154. Furlong MA, Mentzel T, Fanburg-Smith JC. Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod Pathol. 2001; 14(6): 595–603.
  155. Little DJ, et al. Adult rhabdomyosarcoma: outcome following multimodality treatment. Cancer. 2002; 95(2): 377–388.
  156. Montgomery EA, B FG, Fletcher CDM, et al. Pleomorphic rhabdomyosarcoma. WHO Classification of Tumours of Soft Tissue and Bone. IARC, Lyon 2013.
  157. Doyle LA. Sarcoma classification: an update based on the 2013 World Health Organization Classification of Tumors of Soft Tissue and Bone. Cancer. 2014; 120(12): 1763–1774.
  158. Nascimento AF, B FG, Fletcher CDM, et al. Spindle cell/sclerosing rhabdomyosarcoma. WHO Classification of Tumours of Soft Tissue and Bone. IARC, Lyon 2013.
  159. Cavazzana AO, Schmidt D, Ninfo V, et al. Spindle cell rhabdomyosarcoma. A prognostically favorable variant of rhabdomyosarcoma. Am J Surg Pathol. 1992; 16(3): 229–235.
  160. Val-Bernal J, Fernández N, Gómez-Román J. Spindle cell rhabdomyosarcoma in adults. A case report and literature review. Pathology - Research and Practice. 2000; 196(1): 67–72.
  161. Agaram N, Chen CL, Zhang L, et al. RecurrentMYOD1mutations in pediatric and adult sclerosing and spindle cell rhabdomyosarcomas: Evidence for a common pathogenesis. Genes, Chromosomes and Cancer. 2014; 53(9): 779–787.
  162. Zhao Z, Yin Y, Zhang J, et al. Spindle cell/sclerosing rhabdomyosarcoma: case series from a single institution emphasizing morphology, immunohistochemistry and follow-up. Int J Clin Exp Pathol. 2015; 8(11): 13814–13820.
  163. Folpe A, McKenney J, Bridge J, et al. Sclerosing Rhabdomyosarcoma in Adults. Am J Surg Pathol. 2002; 26(9): 1175–1183.
  164. Carroll SJ, Nodit L. Spindle cell rhabdomyosarcoma: a brief diagnostic review and differential diagnosis. Arch Pathol Lab Med. 2013; 137(8): 1155–1158.
  165. Rekhi B, Singhvi T. Histopathological, immunohistochemical and molecular cytogenetic analysis of 21 spindle cell/sclerosing rhabdomyosarcomas. APMIS. 2014; 122(11): 1144–1152.
  166. Hayes-Jordan A, Andrassy R. Rhabdomyosarcoma in children. Curr Opin Pediatr. 2009; 21(3): 373–378.
  167. Crist WM, Anderson JR, Meza JL, et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol. 2001; 19(12): 3091–3102.
  168. Tanaka K, Ozaki T. New TNM classification (AJCC eighth edition) of bone and soft tissue sarcomas: JCOG Bone and Soft Tissue Tumor Study Group. Jpn J Clin Oncol. 2019; 49(2): 103–107.
  169. Crane JN, Xue W, Qumseya A, et al. Clinical group and modified TNM stage for rhabdomyosarcoma: A review from the Children's Oncology Group. Pediatr Blood Cancer. 2022; 69(6): e29644.
  170. Meza JL, Anderson J, Pappo AS, et al. Children's Oncology Group. Analysis of prognostic factors in patients with nonmetastatic rhabdomyosarcoma treated on intergroup rhabdomyosarcoma studies III and IV: the Children's Oncology Group. J Clin Oncol. 2006; 24(24): 3844–3851.
  171. Spalding AC, Hawkins DS, Donaldson SS, et al. The effect of radiation timing on patients with high-risk features of parameningeal rhabdomyosarcoma: an analysis of IRS-IV and D9803. Int J Radiat Oncol Biol Phys. 2013; 87(3): 512–516.
  172. Ladra MM, Szymonifka JD, Mahajan A, et al. Preliminary results of a phase II trial of proton radiotherapy for pediatric rhabdomyosarcoma. J Clin Oncol. 2014; 32(33): 3762–3770.
  173. Benkhaled S, Mané M, Jungels C, et al. Successful treatment of synchronous chemoresistant pulmonary metastasis from pleomorphic rhabdomyosarcoma with stereotaxic body radiation therapy: A case report and a review of the literature. Cancer Treat Res Commun. 2021; 26: 100282.
  174. Kojima Y, Hashimoto K, Ando M, et al. Comparison of dose intensity of vincristine, d-actinomycin, and cyclophosphamide chemotherapy for child and adult rhabdomyosarcoma: a retrospective analysis. Cancer Chemother Pharmacol. 2012; 70(3): 391–397.
  175. Childhood rhabdomyosarcoma treatment — for health professionals. . Nat. Cancer Institute. http://www.cancer.gov.
  176. Raney RB, Maurer HM, Anderson JR, et al. The Intergroup Rhabdomyosarcoma Study Group (IRSG): Major Lessons From the IRS-I Through IRS-IV Studies as Background for the Current IRS-V Treatment Protocols. Sarcoma. 2001; 5(1): 9–15.
  177. Simon JH, Paulino AC, Ritchie JM, et al. Presentation, prognostic factors and patterns of failure in adult rhabdomyosarcoma. Sarcoma. 2003; 7(1): 1–7.
  178. Hawkins WG, Hoos A, Antonescu CR, et al. Clinicopathologic analysis of patients with adult rhabdomyosarcoma. Cancer. 2001; 91(4): 794–803.
  179. Jeziorski A, Rutkowski P. Biblioteka Chirurga Onkologa. Tom 3. Mięsaki tkanek miękkich. Via Medica, Gdańsk 2015.
  180. Keskin S, Ekenel M, Basaran M, et al. Clinicopathological characteristics and treatment outcomes of adult patients with paratesticular rhabdomyosarcoma (PRMS): A 10-year single-centre experience. Can Urol Assoc J. 2012; 6(1): 42–45.
  181. Wu TH, Huang JS, Wang HM, et al. Long-term survivors of adult rhabdomyosarcoma of maxillary sinus following multimodal therapy: case reports and literature reviews. Chang Gung Med J. 2010; 33(4): 466–471.
  182. Mascarenhas L, Chi YY, Hingorani P, et al. Randomized Phase II Trial of Bevacizumab or Temsirolimus in Combination With Chemotherapy for First Relapse Rhabdomyosarcoma: A Report From the Children’s Oncology Group. Journal of Clinical Oncology. 2019; 37(31): 2866–2874.
  183. Saylors RL, Stine KC, Sullivan J, et al. Pediatric Oncology Group. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol. 2001; 19(15): 3463–3469.
  184. Minard-Colin V, Ichante JL, Nguyen L, et al. Phase II study of vinorelbine and continuous low doses cyclophosphamide in children and young adults with a relapsed or refractory malignant solid tumour: good tolerance profile and efficacy in rhabdomyosarcoma--a report from the Société Française des Cancers et leucémies de l'Enfant et de l'adolescent (SFCE). Eur J Cancer. 2012; 48(15): 2409–2416.
  185. Casanova M, Ferrari A, Spreafico F, et al. Vinorelbine in previously treated advanced childhood sarcomas: evidence of activity in rhabdomyosarcoma. Cancer. 2002; 94(12): 3263–3268.
  186. Kuttesch JF, Krailo MD, Madden T, et al. Children's Oncology Group. Phase II evaluation of intravenous vinorelbine (Navelbine) in recurrent or refractory pediatric malignancies: a Children's Oncology Group study. Pediatr Blood Cancer. 2009; 53(4): 590–593.
  187. Mascarenhas L, Lyden ER, Breitfeld PP, et al. Randomized phase II window trial of two schedules of irinotecan with vincristine in patients with first relapse or progression of rhabdomyosarcoma: a report from the Children's Oncology Group. J Clin Oncol. 2010; 28(30): 4658–4663.
  188. Bay JO, Ray-Coquard I, Fayette J, et al. Groupe Sarcome Français. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: a retrospective analysis. Int J Cancer. 2006; 119(3): 706–711.
  189. Judson I, Verweij J, Gelderblom H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014; 15(4): 415–423.
  190. Defachelles A, Bogart E, Casanova M, et al. Randomized phase 2 trial of the combination of vincristine and irinotecan with or without temozolomide, in children and adults with refractory or relapsed rhabdomyosarcoma (RMS). Journal of Clinical Oncology. 2019; 37(15_suppl): 10000–10000.
  191. Seto T, Song MN, Trieu M, et al. Real-World Experiences with Pazopanib in Patients with Advanced Soft Tissue and Bone Sarcoma in Northern California. Med Sci (Basel). 2019; 7(3).
  192. Hashimoto A, Takada K, Takimoto R, et al. Effective treatment of metastatic rhabdomyosarcoma with pazopanib. Gan To Kagaku Ryoho. 2014; 41(8): 1041–1044.
  193. Schöffski P, Wozniak A, Leahy MG, et al. The tyrosine kinase inhibitor crizotinib does not have clinically meaningful activity in heavily pre-treated patients with advanced alveolar rhabdomyosarcoma with FOXO rearrangement: European Organisation for Research and Treatment of Cancer phase 2 trial 90101 'CREATE'. Eur J Cancer. 2018; 94: 156–167.
  194. Rodeberg DA, Stoner JA, Hayes-Jordan A, et al. Prognostic significance of tumor response at the end of therapy in group III rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol. 2009; 27(22): 3705–3711.
  195. Casey DL, Wexler LH, Fox JJ, et al. Predicting outcome in patients with rhabdomyosarcoma: role of [(18)f]fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys. 2014; 90(5): 1136–1142.
  196. Admiraal R, van der Paardt M, Kobes J, et al. High-dose chemotherapy for children and young adults with stage IV rhabdomyosarcoma. Cochrane Database Syst Rev. 2010(12): CD006669.
  197. Womer RB, Pressey JG. Rhabdomyosarcoma and soft tissue sarcoma in childhood. Curr Opin Oncol. 2000; 12(4): 337–344.
  198. Tlemsani C, Leroy K, Gimenez-Roqueplo AP, et al. Chemoresistant pleomorphic rhabdomyosarcoma: whole exome sequencing reveals underlying cancer predisposition and therapeutic options. J Med Genet. 2020; 57(2): 104–108.
  199. Quaglia MLa, Heller G, Ghavimi F, et al. The effect of age at diagnosis on outcome in rhabdomyosarcoma. Cancer. 1994; 73(1): 109–117, doi: 10.1002/1097-0142(19940101)73:1<109::aid-cncr2820730120>3.0.co;2-s.
  200. Kojima Y, Hashimoto K, Ando M, et al. Clinical outcomes of adult and childhood rhabdomyosarcoma treated with vincristine, d-actinomycin, and cyclophosphamide chemotherapy. J Cancer Res Clin Oncol. 2012; 138(7): 1249–1257.
  201. Khosla D, Sapkota S, Kapoor R, et al. Adult rhabdomyosarcoma: Clinical presentation, treatment, and outcome. J Cancer Res Ther. 2015; 11(4): 830–834.
  202. Sookprasert A, Ungareewittaya P, Manotepitipongse A, et al. Treatment Outcome and Predictors of Survival in Thai Adult Rhabdomyosarcoma Cases. Asian Pac J Cancer Prev. 2016; 17(3): 1449–1452.
  203. Drabbe C, Benson C, Younger E, et al. Embryonal and Alveolar Rhabdomyosarcoma in Adults: Real-Life Data From a Tertiary Sarcoma Centre. Clin Oncol. 2020; 32(1): e27–e35.
  204. Patel SR, Hensel CP, He J, et al. Epidemiology and survival outcome of adult kidney, bladder, and prostate rhabdomyosarcoma: A SEER database analysis. Rare Tumors. 2020; 12: 2036361320977401.
  205. Ben Arush M, Minard-Colin V, Mosseri V, et al. Does aggressive local treatment have an impact on survival in children with metastatic rhabdomyosarcoma? Eur J Cancer. 2015; 51(2): 193–201.
  206. Egas-Bejar D, Huh WW. Rhabdomyosarcoma in adolescent and young adult patients: current perspectives. Adolesc Health Med Ther. 2014; 5: 115–125.
  207. Kashtan M, Jayakrishnan T, Rajeev R, et al. Age-based disparities in treatment and outcomes of retroperitoneal rhabdomyosarcoma. Int J Clin Oncol. 2015; 21(3): 602–608.
  208. Dumont SN, Araujo DM, Munsell MF, et al. Management and outcome of 239 adolescent and adult rhabdomyosarcoma patients. Cancer Med. 2013; 2(4): 553–563.
  209. Mandeville HC. Radiotherapy in the Management of Childhood Rhabdomyosarcoma. Clin Oncol (R Coll Radiol). 2019; 31(7): 462–470.
  210. Wasti A, Mandeville H, Gatz S, et al. Rhabdomyosarcoma. Paediatrics and Child Health. 2018; 28(4): 157–163.
  211. Kazanowska B, G J. Mięsaki tkanek miękkich. In: Chybicka A, Sawicz-Birkowska K. ed. Onkologia i Hematologia Dziecięca. PZWL, Warszawa 2008.
  212. Kapoor G, Das K. Soft tissue sarcomas in children. Indian J Pediatr. 2012; 79(7): 936–942.
  213. Arndt CAS. Risk stratification of rhabdomyosarcoma: a moving target. Am Soc Clin Oncol Educ Book. 2013: 415–419.
  214. Gosiengfiao Y, Reichek J, Walterhouse D. What is new in rhabdomyosarcoma management in children? Paediatr Drugs. 2012; 14(6): 389–400.
  215. Skapek SX, Anderson J, Barr FG, et al. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a children's oncology group report. Pediatr Blood Cancer. 2013; 60(9): 1411–1417.
  216. Missiaglia E, Williamson D, Chisholm J, et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012; 30(14): 1670–1677.
  217. Hibbitts E, Chi YY, Hawkins DS, et al. Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: A report from the Children's Oncology Group. Cancer Med. 2019; 8(14): 6437–6448.
  218. Hettmer S, Linardic CM, Kelsey A, et al. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer. 2022 [Epub ahead of print]; 172: 367–386.
  219. Haduong JH, Heske CM, Allen-Rhoades W, et al. An update on rhabdomyosarcoma risk stratification and the rationale for current and future Children's Oncology Group clinical trials. Pediatr Blood Cancer. 2022; 69(4): e29511.
  220. Hays D, Lawrence W, Wharam M, et al. Primary reexcision for patients with ‘microscopic residual’ tumor following initial excision of sarcomas of trunk and extremity sites. J Pediatr Surg. 1989; 24(1): 5–10.
  221. Seitz G, Dantonello TM, Int-Veen C, et al. CWS-96 Study Group. Treatment efficiency, outcome and surgical treatment problems in patients suffering from localized embryonal bladder/prostate rhabdomyosarcoma: a report from the Cooperative Soft Tissue Sarcoma trial CWS-96. Pediatr Blood Cancer. 2011; 56(5): 718–724.
  222. Greenberger BA, Yock TI. The role of proton therapy in pediatric malignancies: Recent advances and future directions. Semin Oncol. 2020; 47(1): 8–22.
  223. Wolden SL, Lyden ER, Arndt CA, et al. Local Control for Intermediate-Risk Rhabdomyosarcoma: Results From D9803 According to Histology, Group, Site, and Size: A Report From the Children's Oncology Group. Int J Radiat Oncol Biol Phys. 2015; 93(5): 1071–1076.
  224. Dantonello TM, Winkler P, Boelling T, et al. CWS Study Group. Embryonal rhabdomyosarcoma with metastases confined to the lungs: report from the CWS Study Group. Pediatr Blood Cancer. 2011; 56(5): 725–732.
  225. Hibbitts E, Chi YY, Hawkins DS, et al. Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: A report from the Children's Oncology Group. Cancer Med. 2019; 8(14): 6437–6448.
  226. Heske CM, Mascarenhas L. Relapsed Rhabdomyosarcoma. J Clin Med. 2021; 10(4).
  227. Dantonello T, Int-Veen C, Schuck A, et al. Survival following disease recurrence of primary localized alveolar rhabdomyosarcoma. Pediatric Blood & Cancer. 2013; 60(8): 1267–1273.
  228. Wagner LM, Fouladi M, Ahmed A, et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2015; 62(3): 440–444.
  229. Weigel B, Malempati S, Reid JM, et al. Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2014; 61(3): 452–456.
  230. Okada K, Yamasaki K, Tanaka C, et al. Phase I study of bevacizumab plus irinotecan in pediatric patients with recurrent/refractory solid tumors. Jpn J Clin Oncol. 2013; 43(11): 1073–1079.
  231. Federman N, Crane J, Gonzales A, et al. A phase 1 dose-escalation/expansion clinical trial of mocetinostat in combination with vinorelbine in adolescents and young adults with refractory and/or recurrent rhabdomyosarcoma: Interim results. Journal of Clinical Oncology. 2022; 40(16_suppl): 11553–11553.

Regulamin

Ważne: serwis https://journals.viamedica.pl/ wykorzystuje pliki cookies. Więcej >>

Używamy informacji zapisanych za pomocą plików cookies m.in. w celach statystycznych, dostosowania serwisu do potrzeb użytkownika (np. język interfejsu) i do obsługi logowania użytkowników. W ustawieniach przeglądarki internetowej można zmienić opcje dotyczące cookies. Korzystanie z serwisu bez zmiany ustawień dotyczących cookies oznacza, że będą one zapisane w pamięci komputera. Więcej informacji można znaleźć w naszej Polityce prywatności.

Czym są i do czego służą pliki cookie możesz dowiedzieć się na stronie wszystkoociasteczkach.pl.

 

Wydawcą serwisu jest  VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl