Tom 7, Nr 3 (2021)
Artykuł przeglądowy
Opublikowany online: 2021-04-07

dostęp otwarty

Wyświetlenia strony 1890
Wyświetlenia/pobrania artykułu 883
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Czynniki ryzyka i profilaktyka pierwotna raka płuca. Leczenie chorych uzależnionych od palenia tytoniu

Paweł Krawczyk1, Rodryg Ramlau2, Justyna Błach13, Robert Kieszko1, Kazimierz Roszkowski-Ślisz4, Tomasz Kucharczyk1, Stanisław Kieszko5, Janusz Milanowski1
Onkol Prakt Klin Edu 2021;7(3):160-173.

Streszczenie

Mimo poznania czynników ryzyka raka płuca, pozostaje on główną przyczyną zgonów z powodu nowotworów złośliwych w krajach wysokorozwiniętych. Powodem tego zjawiska jest narastające zanieczyszczenie środowiska naturalnego oraz przede wszystkim trudności w eliminacji nałogu palenia tytoniu. W polskich dużych aglomeracjach miejskich narażenie na pyły zawieszone zawierające na swojej powierzchni węglowodory oraz na lotne węglowodory, tlenki azotu i siarki stale wzrasta. Co więcej prawie 25% polskiej populacji pali papierosy, a eliminacja nałogu palenia za pomocą psychoterapii, nikotynowej terapii zastępczej i farmakoterapii bywa nieskuteczna. W pracy tej wykazujemy, że wykorzystanie innych niż papierosy produktów spalających tytoń (np. cygara czy fajki) oraz marihuanę jest równie niebezpieczne dla zdrowia co klasyczne papierosy. Pojawiły się też inne produkty zawierające nikotynę: e-papierosy i systemy podgrzewające tytoń. Produkty te powodują także silne uzależnienie od nikotyny, ale powstające w nich aerozole zawierają mniej substancji toksycznych w porównaniu do dymu papierosowego. Istnieją zatem przesłanki do stosowania tych produktów zamiast tradycyjnych papierosów u osób silnie uzależnionych od nikotyny w celu redukcji ryzyka zdrowotnego, w tym zmniejszenia ryzyka zachorowania na raka płuca. Trzeba pamiętać, że jedynie całkowite zaprzestanie palenia oraz wykorzystywania produktów zawierających nikotynę skutecznie redukuje ryzyko zachorowania na raka płuc.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Wojciechowska U, Didkowska J, Michałek I, Olasek P, Ciuba A. Nowotwory złośliwe w Polsce w 2018 roku. Ministerstwo Zdrowia. Wraszawa. 2020. ISSN 0867 8251.
  2. Globocan. https://gco.iarc.fr/today/data/factsheets/populations/616-poland-fact-sheets.pdf.
  3. Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer. 2014; 33(4): 189–196.
  4. Mahjub H, Sadri GH. Meta-analysis of case-referent studies of specific environmental or occupational pollutants on lung cancer. Indian J Cancer. 2006; 43(4): 169–173.
  5. Li N, Georas S, Alexis N, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol. 2016; 138(2): 386–396.
  6. Kawanaka Y, Matsumoto E, Sakamoto K, et al. Estimation of the contribution of ultrafine particles to lung deposition of particle-bound mutagens in the atmosphere. Sci Total Environ. 2011; 409(6): 1033–1038.
  7. Oberdorster G. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol. 1996; 8 Suppl: 73–89.
  8. Lissowska J, Bardin-Mikolajczak A, Fletcher T, et al. Lung cancer and indoor pollution from heating and cooking with solid fuels: the IARC international multicentre case-control study in Eastern/Central Europe and the United Kingdom. Am J Epidemiol. 2005; 162(4): 326–333.
  9. Sjögren B, Hansen KS, Kjuus H, et al. Exposure to stainless steel welding fumes and lung cancer: a meta-analysis. Occup Environ Med. 1994; 51(5): 335–336.
  10. IARC Monographs. Chemical agents and related occupations. Volume 100 F. A review of human carcinogens. Lyon, World Health Organization/IARC. 2012.
  11. Gustavsson P, Nyberg F, Pershagen G, et al. Occupational exposure and lung cancer risk: a population-based case-referent study in Sweden. Am J Epidemiol. 2000; 152(1): 32–40.
  12. Gilham C, Rake C, Burdett G, et al. Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden. Occup Environ Med. 2016; 73(5): 290–299.
  13. IARC monographs on the evaluation of carcinogenic risks to humans. arsenic in drinking-water. Volume 84. Some drinking-water disinfectants and contaminants, including arsenic. Lyon, World Health Organization/IARC, 2007.
  14. Hayes RB. The carcinogenicity of metals in humans. Cancer Causes Control. 1997; 8(3): 371–385.
  15. Steenland K, Mannetje A, Boffetta P, et al. International Agency for Research on Cancer. Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes Control. 2001; 12(9): 773–784.
  16. Rota M, Bosetti C, Boccia S, et al. Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: an updated systematic review and a meta-analysis to 2014. Arch Toxicol. 2014; 88(8): 1479–1490.
  17. Benbrahim-Tallaa L, Baan RA, Grosse Y, et al. International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol. 2012; 13(7): 663–664.
  18. Olsson A, Gustavsson P, Kromhout H, et al. Exposure to Diesel Motor Exhaust and Lung Cancer Risk in a Pooled Analysis from Case-Control Studies in Europe and Canada. Am J Respir Crit Care Med. 2011; 183(7): 941–948.
  19. Dai Y, Ren D, Bassig BA, et al. Occupational exposure to diesel engine exhaust and serum cytokine levels. Environ Mol Mutagen. 2018; 59(2): 144–150.
  20. World Health Organization. Infographic: air pollution – the silent killer. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/news/news/2018/5/over-half-a-million-premature-deaths-annually-in-the-european-region-attributable-to-household-and-ambient-air-pollution/infographic-air-pollution-the-silent-killer. 2019.
  21. Schraufnagel DE, Balmes JR, De Matteis S, et al. Health Benefits of Air Pollution Reduction. Ann Am Thorac Soc. 2019; 16(12): 1478–1487.
  22. https://www.fda.gov/tobacco-products/rules-regulations-and-guidance/harmful-and-potentially-harmful-constituents-tobacco-products-and-tobacco-smoke-established-list.
  23. Tonstad S, Andrew Johnston J. Cardiovascular risks associated with smoking: a review for clinicians. Eur J Cardiovasc Prev Rehabil. 2006; 13(4): 507–514.
  24. Pirie K, Peto R, Reeves GK, et al. Million Women Study Collaborators. The 21st century hazards of smoking and benefits of stopping: a prospective study of one million women in the UK. Lancet. 2013; 381(9861): 133–141.
  25. The health consequences of smoking: a report of the surgeon centers for disease control and prevention (US). Office on Smoking Health. Surgeon General of the United States. 2014.
  26. Starek A, Podolak I. [Carcinogenic effect of tobacco smoke]. Rocz Panstw Zakl Hig. 2009; 60(4): 299–310.
  27. Doll R, Hill AB, DOLL R, et al. The mortality of doctors in relation to their smoking habits; a preliminary report. Br Med J. 1954; 1(4877): 1451–1455.
  28. Cummings KM, Proctor RN. The changing public image of smoking in the United States: 1964-2014. Cancer Epidemiol Biomarkers Prev. 2014; 23(1): 32–36.
  29. Funck-Brentano C, Raphaël M, Lafontaine M, et al. Effects of type of smoking (pipe, cigars or cigarettes) on biological indices of tobacco exposure and toxicity. Lung Cancer. 2006; 54(1): 11–18.
  30. Pechacek TF, Folsom AR, de Gaudermaris R, et al. Smoke exposure in pipe and cigar smokers. Serum thiocyanate measures. JAMA. 1985; 254(23): 3330–3332.
  31. Albandar JM, Streckfus CF, Adesanya MR, et al. Cigar, pipe, and cigarette smoking as risk factors for periodontal disease and tooth loss. J Periodontol. 2000; 71(12): 1874–1881.
  32. Claus ED, Moeller BC, Harbour D, et al. Use Behaviors, Dependence, and Nicotine Exposure Associated with Cigar Smoking. Tob Regul Sci. 2018; 4(1): 548–561.
  33. Sharma P, Murthy P, Bharath MM. Chemistry, metabolism, and toxicology of cannabis: clinical implications. Iran J Psychiatry. 2012; 7(4): 149–156.
  34. Tan WC, Lo C, Jong A, et al. Vancouver Burden of Obstructive Lung Disease (BOLD) Research Group. Marijuana and chronic obstructive lung disease: a population-based study. CMAJ. 2009; 180(8): 814–820.
  35. Callaghan RC, Allebeck P, Sidorchuk A. Marijuana use and risk of lung cancer: a 40-year cohort study. Cancer Causes Control. 2013; 24(10): 1811–1820.
  36. About electronic cigarettes (e-cigarettes). Centers of Disease Control and Prevention. https://www.cdc.gov/tobacco/basic_information/e-cigarettes/about-e-cigarettes.html.
  37. Dyrektywa Parlamentu Europejskiego i Rady nr 2014/40/UE z dnia 3 kwietnia 2014 r. w sprawie zbliżenia przepisów ustawowych, wykonawczych i administracyjnych państw członkowskich w sprawie produkcji, prezentowania i sprzedaży wyrobów tytoniowych i powiązanych wyrobów oraz uchylająca dyrektywę 2001/37/WE. Dziennik Urzędowy Unii Europejskiej 29.4.2014.
  38. Evidence review of e-cigarettes and heated tobacco products 2018. A report commissioned by Public Health England. 2018. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/684963/Evidence_review_of_e-cigarettes_and_heated_tobacco_products_2018.pdf.
  39. Statement on the toxicological evaluation of novel heat-not-burn tobacco products. Committee on Toxicity. 2017. . https://cot.food.gov.uk/sites/default/files/heat_not_burn_tobacco_statement.pdf.
  40. Dinakar C, O'Connor GT. The Health Effects of Electronic Cigarettes. N Engl J Med. 2016; 375(14): 1372–1381.
  41. Rozporządzenie Ministra Zdrowia z dnia 9 listopada 2015 r. w sprawie nadania statutu Biuru do spraw Substancji Chemicznych. Dz.U. 2015 poz. 1953.
  42. Cheng T. Chemical evaluation of electronic cigarettes. Tob Control. 2014; 23 Suppl 2: ii11–ii17.
  43. Gotts JE, Jordt SE, McConnell R, et al. What are the respiratory effects of e-cigarettes? BMJ. 2019; 366: l5275.
  44. Outbreak of lung injury associated with the use of e-cigarette, or vaping, products. Centers of Disease Control and Prevention. 2020. https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html.
  45. Vaping illness update: FDA warns public to stop using tetrahydrocannabinol (THC)-containing vaping products and any vaping products obtained off the street. Food and Drug Administration. 2019. https://www.fda.gov/consumers/consumer-updates/vaping-illness-update-fda-warns-public-stop-using-tetrahydrocannabinol-thc-containing-vaping.
  46. Jerry JM, Collins GB, Streem D. E-cigarettes: Safe to recommend to patients? Cleve Clin J Med. 2015; 82(8): 521–526.
  47. Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res. 2014; 12(1): 14–23.
  48. Sanner T, Grimsrud TK. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment - A Review. Front Oncol. 2015; 5: 196.
  49. Stratton K, Kwan LY, Eaton DL. Public health consequences of e-Cigarettes. National Academies of Sciences, Engineering, and Medicine. National Academies Press. 2018.
  50. Hiemstra PS, Bals R. Basic science of electronic cigarettes: assessment in cell culture and in vivo models. Respir Res. 2016; 17(1): 127.
  51. Drummond MB, Upson D. Electronic cigarettes. Potential harms and benefits. Ann Am Thorac Soc. 2014; 11(2): 236–242.
  52. Rom O, Pecorelli A, Valacchi G, et al. Are E-cigarettes a safe and good alternative to cigarette smoking? Ann N Y Acad Sci. 2015; 1340: 65–74.
  53. Hajek P, Etter JF, Benowitz N, et al. Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction. 2014; 109(11): 1801–1810.
  54. Orellana-Barrios MA, Payne D, Mulkey Z, et al. Electronic cigarettes — a narrative review for clinicians. Am J Med. 2015; 128(7): 674–681.
  55. Glantz SA, Bareham DW. E-Cigarettes: Use, Effects on Smoking, Risks, and Policy Implications. Annu Rev Public Health. 2018; 39: 215–235.
  56. The health consequences of smoking – 50 years of progress: a Report of the Surgeon General. National Center for Chronic Disease Prevention Health Promotion (US) Office on Smoking Health. Surgeon General of the United States. 2014.
  57. E-cigarette use among youth and young adults: a report of the Surgeon General. Surgeon General of the United States. 2016.
  58. https://www.gov.uk/guidance/licensing-procedure-for-electronic-cigarettes-as-medicines.
  59. Simonavicius E, McNeill A, Shahab L, et al. Heat-not-burn tobacco products: a systematic literature review. Tob Control. 2019; 28(5): 582–594.
  60. Heat tobacco products. A brief. World Health Organization. 2020. https://www.euro.who.int/__data/assets/pdf_file/0008/443663/Heated-tobacco-products-brief-eng.pdf?ua=1.
  61. Burning Issues: The Global State of Tobacco Harm Reduction 2020. https://gsthr.org/resources/item/burning-issues-global-state-tobacco-harm-reduction-2020.
  62. Addictive nicotine and harmful substances also present in heated tobacco.2020. https://www.rivm.nl/en/news/addictive-nicotine-and-harmful-substances-also-present-in-heated-tobacco.
  63. Smoking: tobacco harm reduction approaches overview. National Institute for Health and Care Excellence. 2020. https://pathways.nice.org.uk/pathways/smoking-tobacco-harm-reduction-approaches#path=view%3A/pathways/smoking-tobacco-harm-reduction-approaches/smoking-tobacco-harm-reduction-approaches-overview.xml&content=view-index.
  64. https://www.fda.gov/news-events/press-announcements/fda-grants-first-ever-modified-risk-orders-eight-smokeless-tobacco-products.
  65. http://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-iqos-tobacco-heating-system-reduced-exposure-information.
  66. Uchiyama S, Noguchi M, Takagi N, et al. Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products. Chem Res Toxicol. 2018; 31(7): 585–593.
  67. Stephens WE. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tob Control. 2018 [Epub ahead of print]; 27: 10–17.
  68. Slob W, Soeteman-Hernández LG, Bil W, et al. A Method for Comparing the Impact on Carcinogenicity of Tobacco Products: A Case Study on Heated Tobacco Versus Cigarettes. Risk Anal. 2020; 40(7): 1355–1366.
  69. Hirano T, Takei T. Estimating the carcinogenic potency of second-hand smoke and aerosol from cigarettes and heated tobacco products. Int J Environ Res Public Health. 2020; 17(22).
  70. Malinska D, Szymański J, Patalas-Krawczyk P, et al. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food Chem Toxicol. 2018; 115: 1–12.
  71. Haziza C, de La Bourdonnaye G, Donelli A, et al. Effects of switching to the tobacco heating system 2.2 menthol, smoking abstinence, or continued cigarette smoking on biomarkers of exposure: a randomized, controlled, open-label, multicenter study in sequential confinement and ambulatory settings (Part 1). Nicotine Tob Res. 2018; 20(2): 173–182.
  72. European Network for Smoking and Tobacco Prevention ENSP. 2018. Guidelines for treating tobacco dependence. http://elearning-ensp.eu.
  73. Hartmann-Boyce J, Chepkin SC, Ye W, et al. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst Rev. 2018; 5: CD000146. 2018.
  74. Howes S, Hartmann-Boyce J, Livingstone-Banks J, et al. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2020; 4: CD000031.
  75. Tonstad S, Davies S, Flammer M, et al. Psychiatric adverse events in randomized, double-blind, placebo-controlled clinical trials of varenicline: a pooled analysis. Drug Saf. 2010; 33(4): 289–301.
  76. Cahill K, Lindson-Hawley N, Thomas KH, et al. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev. 2016(5): CD006103.
  77. Tutka P, Mróz K, Zatoński W. Cytyzyna — renesans znanego alkaloidu. Aspekty farmakologiczne zastosowania w leczeniu uzależnienia od nikotyny. Farm Psych Neurol. 2006; 1: 33–39.
  78. Caponnetto P, Caruso M, Maglia M, et al. Non-inferiority trial comparing cigarette consumption, adoption rates, acceptability, tolerability, and tobacco harm reduction potential in smokers switching to Heated Tobacco Products or electronic cigarettes: Study protocol for a randomized controlled trial. Contemp Clin Trials Commun. 2020; 17: 100518.
  79. https://www.pzh.gov.pl/wp-content/uploads/2020/06/RAPORT-TYTO%C5%83-M%C5%81ODZIE%C5%BB-GRUDZIE%C5%83-2019-WERSJA-FINALNA-www.pdf.
  80. https://ec.europa.eu/commfrontoffice/publicopinionmobile/index.cfm/ResultDoc/download/DocumentKy/91165;jsessionid=28AE5E8E3EE5F05A565D7DCFFC0D223A.cfusion06901?CFID=8232103&CFTOKEN=e7ecd4d153b9161a-79E39A8E-C184-EB39-464AC23A2096BDB0.
  81. Bekki K, Inaba Y, Uchiyama S, et al. Comparison of Chemicals in Mainstream Smoke in Heat-not-burn Tobacco and Combustion Cigarettes. J UOEH. 2017; 39(3): 201–207.
  82. Szymański FM, Kuna P, Płatek AE, et al. Produkty tytoniowe oparte na podgrzewaniu tytoniu (heat-not-burn) a zdrowie pacjentów — opinia grupy ekspertów. Choroby Serca i Naczyń. 2019; 16(2): 135–142.
  83. Jawień A, Filipiak KJ, Bręborowicz A, et al. Rekomendacje dotyczące postępowania w chorobie tętnic kończyn dolnych (LEAD) na podstawie wytycznych ESVS/ESC 2017 – stanowisko ekspertów Polskiego Towarzystwa Chirurgii Naczyniowej, Polskiego Towarzystwa Nadciśnienia Tętniczego, Polskiego Towarzystwa Leczenia Ran oraz Sekcji Farmakoterapii Sercowo-Naczyniowej Polskiego Towarzystwa Kardiologicznego. Choroby Serca i Naczyń. 2020; 17(1): 1–54.