open access

Vol 72, No 3 (2022)
Review paper
Published online: 2022-04-12
Get Citation

Assessment of the effectiveness of clinical PSA concentration measurements in early prostate cancer detection

Tomasz Tatara12, Wojciech Miazga2, Jakub Świtalski23, Katarzyna Wnuk24, Magdalena Jabłońska25, Adrian Matera2, Dagmara Karauda2, Agnieszka Zagrobelna2, Sylwia Jopek3
·
Nowotwory. Journal of Oncology 2022;72(3):167-173.
Affiliations
  1. Department of Public Health, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
  2. Department of Health Policy Programs, Department of Health Technology Assessment, Agency for Health Technology Assessment and Tariff System, Warsaw, Poland
  3. Department of Health Economics and Medical Law, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
  4. Department of Epidemiology and Primary Cancer Prevention, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
  5. Department of Prevention of Environmental Hazards, Allergology and Immunology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland

open access

Vol 72, No 3 (2022)
Review article
Published online: 2022-04-12

Abstract

Introduction.Prostate cancer is a malignant neoplasm originating primarily in the peripheral zone of the prostate gland. A patient’s survival depends largely on the stage of the disease and the treatment method used, which is why early detection of the tumour plays an important role. One of the methods used for screening for prostate cancer is the measurement of prostate specific antigen (PSA) concentration.

Material and methods.The analysis was based on the results of the research found in the systematic review. The fol­lowing sources of medical information were searched for secondary research: Medline (via PubMed), Embase (via Ovid), The Cochrane Library. The time range has been set to articles published between July 2011 and July 2021.

Results.The inclusion criteria for a systematic review of the clinical effectiveness of PSA measurements in the early detection of prostate cancer were met by 5 secondary scientific evidence articles. Most of the evidence found showed an increase in the detection of prostate cancer after PSA testing. In case of stage III or IV tumours and the metastatic prostate cancer (CaP) variant, a statistically significant reduction in tumour detection was demonstrated. Most of the scientific evidence indicates a statistically insignificant effect of PSA screening on the risk of death due to CaP (with a diagnostic threshold of ≥4 ng/ml).

Conclusions.Screening in the opportunistic variant aimed at prostate cancer with the use of PSA concentration is justified in men between 50 and 69 years of age, and in men <50 years of age should they have additional risk factors. Conversely, it seems unjustified to conduct population-based screening for prostate cancer.

Abstract

Introduction.Prostate cancer is a malignant neoplasm originating primarily in the peripheral zone of the prostate gland. A patient’s survival depends largely on the stage of the disease and the treatment method used, which is why early detection of the tumour plays an important role. One of the methods used for screening for prostate cancer is the measurement of prostate specific antigen (PSA) concentration.

Material and methods.The analysis was based on the results of the research found in the systematic review. The fol­lowing sources of medical information were searched for secondary research: Medline (via PubMed), Embase (via Ovid), The Cochrane Library. The time range has been set to articles published between July 2011 and July 2021.

Results.The inclusion criteria for a systematic review of the clinical effectiveness of PSA measurements in the early detection of prostate cancer were met by 5 secondary scientific evidence articles. Most of the evidence found showed an increase in the detection of prostate cancer after PSA testing. In case of stage III or IV tumours and the metastatic prostate cancer (CaP) variant, a statistically significant reduction in tumour detection was demonstrated. Most of the scientific evidence indicates a statistically insignificant effect of PSA screening on the risk of death due to CaP (with a diagnostic threshold of ≥4 ng/ml).

Conclusions.Screening in the opportunistic variant aimed at prostate cancer with the use of PSA concentration is justified in men between 50 and 69 years of age, and in men <50 years of age should they have additional risk factors. Conversely, it seems unjustified to conduct population-based screening for prostate cancer.

Get Citation

Keywords

prostate cancer; prostate-specific antigen; early detection of cancer

Supp./Additional Files (1)
Search strategy, PRISMA Flow Diagram, publication list
Download
49KB
About this article
Title

Assessment of the effectiveness of clinical PSA concentration measurements in early prostate cancer detection

Journal

Nowotwory. Journal of Oncology

Issue

Vol 72, No 3 (2022)

Article type

Review paper

Pages

167-173

Published online

2022-04-12

Page views

4509

Article views/downloads

504

DOI

10.5603/NJO.a2022.0022

Bibliographic record

Nowotwory. Journal of Oncology 2022;72(3):167-173.

Keywords

prostate cancer
prostate-specific antigen
early detection of cancer

Authors

Tomasz Tatara
Wojciech Miazga
Jakub Świtalski
Katarzyna Wnuk
Magdalena Jabłońska
Adrian Matera
Dagmara Karauda
Agnieszka Zagrobelna
Sylwia Jopek

References (28)
  1. Krzemieniecki K, Krzakowski M. Selected issues of clinical oncology. In: Polesek M. ed. Interna Szczeklik. LSC Communications Europe Sp. zoo, Kraków 2017: 2330–2332.
  2. Stelmach A, Potemski P. Neoplasms of the urogenital system. In: Krzakowski K, Warzocha K. ed. Recommendations for diagnostic and therapeutic treatment in malignant neoplasms - 2013. Via Medica, Gdańsk 2013: 335–351.
  3. Cuzick J, Thorat M, Andriole G, et al. Prevention and early detection of prostate cancer. Lancet Oncol. 2014; 15(11): e484–e492.
  4. The prostate gland. National Cancer Registry. http://onkologia.org.pl/rak-gruczolu-krokowego/ (12.2021).
  5. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–249.
  6. European Cancer Information System. European Commission. https://ecis.jrc.ec.europa.eu/explorer.php?$0-0$1-AEE$4-1$3-All$6-0,85$5-2020,2020$7-7$2-All$CEstByCancer$X0_8-3$CEstRelativeCanc$X1_8-3$X1_9-AE27$CEstBySexByCancer$X2_8-3$X2_-1-1 (02.2022).
  7. Didkowska J, Wojciechowska U, Olasek P, et al. Malignant neoplasms in Poland in 2019. http://onkologia.org.pl/wp-content/uploads/Nowotwory_2019.pdf (02.2022).
  8. Institute for Health Metrics and Evaluation, GBD Results Tool: Prostate Cancer. https://vizhub.healthdata.org/gbdcompare/ (12.2021).
  9. On-line reports database. National Cancer Registry. http://onkologia.org.pl/rak-gruczolu-krokowego/ (02.2022).
  10. Krzysztofiak T, Majewski W. The efficacy of radical radiotherapy for patients with primarily diagnosed prostate cancer with metastases to regional lymph nodes. Nowotowry J Oncol. 2018; 68(5-6): 253–258.
  11. Krzemieniecki K, Krzakowski M. Selected issues of clinical oncology. In: Polesek M. ed. Interna Szczeklik. LSC Communications Europe Sp. zoo, Kraków 2017: 2330–2332.
  12. American Cancer Society Recommendations for Prostate Cancer Early Detection 2021. American Cancer Society. https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/acs-recommendations.html (12.2021).
  13. Carroll PR, Parsons JK, Box G, et al. NCCN Guidelines Version 1.2021. Prostate Cancer Early Detection. https://www.cancer.org/cancer/prostate-cancer/detection-diagnosisstaging/acs-recommendations.html (12.2021).
  14. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration in London 2011.
  15. Paschen U, Sturtz S, Fleer D, et al. Assessment of prostate-specific antigen screening: an evidence-based report by the German Institute for Quality and Efficiency in Health Care. BJU Int. 2022; 129(3): 280–289.
  16. Fenton JJ, Weyrich MS, Durbin S, et al. Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2018; 319(18): 1914–1931.
  17. Ilic D, Djulbegovic M, Jung JH, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ. 2018; 362: k3519.
  18. Rahal AK, Badgett RG, Hoffman RM. Screening Coverage Needed to Reduce Mortality from Prostate Cancer: A Living Systematic Review. PLoS One. 2016; 11(4): e0153417.
  19. Lumen N, Fonteyne V, De Meerleert G, et al. Population screening for prostate cancer: an overview of available studies and meta-analysis. Int J Urol. 2012; 19(2): 100–108.
  20. Martin R, Donovan J, Turner E, et al. Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality. JAMA. 2018; 319(9): 883–895.
  21. Andriole GL, Crawford ED, Grubb RL, et al. PLCO Project Team. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009; 360(13): 1310–1319.
  22. Pinsky PF, Prorok PC, Yu K, et al. Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer. 2017; 123(4): 592–599.
  23. Schröder FH, Hugosson J, Roobol MJ, et al. ERSPC Investigators. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009; 360(13): 1320–1328.
  24. Schröder F, Hugosson J, Roobol M, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014; 384(9959): 2027–2035.
  25. Stelmach A, Potemski P, Borówka A, et al. Neoplasms of the genitourinary system. http://www.onkologia.zalecenia.med.pl/pdf/zalecenia_PTOK_tom1_07_Nowotwory_ukladu_moczowo-plciowego_20130301.pdf (12.2021).
  26. Heindenreich A., Bolla M., Joniau S. et al. Guidelines for the management of patients with prostate cancer. https://pturol.org.pl/Image/files/Guidelines%20WYTYCZNE%20rak%20stercza.pdf (12.2021).
  27. Parker C, Castro E, Fizazi K, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020; 31(9): 1119–1134.
  28. Grossman DC, Curry SJ, Owens DK, et al. US Preventive Services Task Force. Screening for Prostate Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2018; 319(18): 1901–1913.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Wydawcą serwisu jest VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl