Vol 55, No 2 (2021)
Review Article
Published online: 2021-04-02

open access

Page views 2859
Article views/downloads 5452
Get Citation

Connect on Social Media

Connect on Social Media

Botulinum toxin type-A preparations are not the same medications — basic science (Part 1)

Halina Car1, Andrzej Bogucki2, Marcin Bonikowski3, Małgorzata Dec-Ćwiek4, Artur Drużdż5, Dariusz Koziorowski6, Monika Rudzińska-Bar7, Iwona Sarzyńska-Długosz8, Jarosław Sławek9
Pubmed: 33797747
Neurol Neurochir Pol 2021;55(2):133-140.

Abstract

Botulinum neurotoxin type A (BoNT/A) formulations are widely used in clinical practice. Although they share a common mechanism of action resulting in presynaptic block in acetylocholine release, their structure and pharmacological properties demonstrate some similarities and many differences. Bioequivalence has been discussed since the onset of the clinical use of BoNT/A. In this review, we provide an update on the studies and compare the molecular structure, mechanisms of action, diffusion and spread, as well as immunogenicity and dose equivalence of onabotulinumtoxinA, abobotulinumtoxinA and incobotulinumtoxinA.

Article available in PDF format

View PDF Download PDF file

References

  1. Johnson EA, Bradshaw M. Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon. 2001; 39(11): 1703–1722.
  2. Frevert J. Xeomin: an innovative new botulinum toxin type A. Eur J Neurol. 2009; 16 Suppl 2: 11–13.
  3. Frevert J, Frevert J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R D. 2015; 15(1): 1–9.
  4. Pickett A. Botulinum Toxin as a Clinical Product: Manufacture and Pharmacology. Clinical Applications of Botulinum Neurotoxin. 2014: 7–49.
  5. WAGMAN J, BATEMAN JB. Botulinum type A toxin: properties of a toxic dissociation product. Arch Biochem Biophys. 1953; 45(2): 375–383.
  6. Cai S, Sarkar HK, Singh BR. Enhancement of the endopeptidase activity of botulinum neurotoxin by its associated proteins and dithiothreitol. Biochemistry. 1999; 38(21): 6903–6910.
  7. Frevert J, Dressler D. Complexing proteins in botulinum toxin type A drugs: a help or a hindrance? Biologics. 2010; 4: 325–332.
  8. Eisele KH, Fink K, Vey M, et al. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon. 2011; 57(4): 555–565.
  9. Frevert J, Frevert J. Content of botulinum neurotoxin in Botox®/Vistabel®, Dysport®/Azzalure®, and Xeomin®/Bocouture®. Drugs R D. 2010; 10(2): 67–73.
  10. Dressler D, Adib Saberi F, Bigalke H. Botulinum toxin therapy: reduction of injection site pain by pH normalisation. J Neural Transm (Vienna). 2016; 123(5): 527–531.
  11. Pirazzini M, Rossetto O, Eleopra R, et al. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev. 2017; 69(2): 200–235.
  12. Jhang JF, Kuo HC. Botulinum Toxin A and Lower Urinary Tract Dysfunction: Pathophysiology and Mechanisms of Action. Toxins (Basel). 2016; 8(4): 120.
  13. Mahrhold S, Bergström T, Stern D, et al. Only the complex N559-glycan in the synaptic vesicle glycoprotein 2C mediates high affinity binding to botulinum neurotoxin serotype A1. Biochem J. 2016; 473(17): 2645–2654.
  14. Lacy DB, Tepp W, Cohen AC, et al. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998; 5(10): 898–902.
  15. Lauc G, Pezer M, Rudan I, et al. Mechanisms of disease: The human N-glycome. Biochim Biophys Acta. 2016; 1860(8): 1574–1582.
  16. Kroken AR, Blum FC, Zuverink M, et al. Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. Infect Immun. 2017; 85(1).
  17. Kammerer RA, Benoit RM. Botulinum neurotoxins: new questions arising from structural biology. Trends Biochem Sci. 2014; 39(11): 517–526.
  18. Sugawara Yo, Matsumura T, Takegahara Y, et al. Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol. 2010; 189(4): 691–700.
  19. Lee K, Zhong X, Gu S, et al. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science. 2014; 344(6190): 1405–1410.
  20. Jacky BPS, Garay PE, Dupuy J, et al. Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A). PLoS Pathog. 2013; 9(5): e1003369.
  21. Li X, Coffield JA. Structural and Functional Interactions between Transient Receptor Potential Vanilloid Subfamily 1 and Botulinum Neurotoxin Serotype A. PLoS One. 2016; 11(1): e0143024.
  22. Sugawara Yo, Yutani M, Amatsu S, et al. Functional dissection of the Clostridium botulinum type B hemagglutinin complex: identification of the carbohydrate and E-cadherin binding sites. PLoS One. 2014; 9(10): e111170.
  23. Grando SA, Zachary CB. The non-neuronal and nonmuscular effects of botulinum toxin: an opportunity for a deadly molecule to treat disease in the skin and beyond. Br J Dermatol. 2018; 178(5): 1011–1019.
  24. Kim YJ, Kim JH, Lee KJ, et al. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages. PLoS One. 2015; 10(4): e0120840.
  25. Khera M, Somogyi GT, Kiss S, et al. Botulinum toxin A inhibits ATP release from bladder urothelium after chronic spinal cord injury. Neurochem Int. 2004; 45(7): 987–993.
  26. Collins VM, Daly DM, Liaskos M, et al. OnabotulinumtoxinA significantly attenuates bladder afferent nerve firing and inhibits ATP release from the urothelium. BJU Int. 2013; 112(7): 1018–1026.
  27. Apostolidis A, Popat R, Yiangou Y, et al. Decreased sensory receptors P2X3 and TRPV1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J Urol. 2005; 174(3): 977–82; discussion 982.
  28. Rapp DE, Turk KW, Bales GT, et al. Botulinum toxin type a inhibits calcitonin gene-related peptide release from isolated rat bladder. J Urol. 2006; 175(3 Pt 1): 1138–1142.
  29. Peng CH, Jhang JF, Shie JH, et al. Down regulation of vascular endothelial growth factor is associated with decreased inflammation after intravesical OnabotulinumtoxinA injections combined with hydrodistention for patients with interstitial cystitis--clinical results and immunohistochemistry analysis. Urology. 2013; 82(6): 1452.e1–1452.e6.
  30. Akaike N. Shin MC Wakita M Torii Y Harakawa T Ginnaga A Kato K Kaji R Kozaki S. Trans synaptic inhibition of spinal transmission by A2 botulinum toxin. J Physiol. 2013; 15: 1031–1043.
  31. Makunts T, Wollmer MA, Abagyan R. Postmarketing safety surveillance data reveals antidepressant effects of botulinum toxin across various indications and injection sites. Sci Rep. 2020; 10(1): 12851.
  32. Zamanian A, Ghanbari Jolfaei A, Mehran G, et al. Efficacy of Botox versus Placebo for Treatment of Patients with Major Depression. Iran J Public Health. 2017; 46(7): 982–984.
  33. Brin MF, Durgam S, Lum A, et al. OnabotulinumtoxinA for the treatment of major depressive disorder: a phase 2 randomized, double-blind, placebo-controlled trial in adult females. Int Clin Psychopharmacol. 2020; 35(1): 19–28.
  34. Cliff SH, Judodihardjo H, Eltringham E. Different formulations of botulinum toxin type A have different migration characteristics: a double-blind, randomized study. J Cosmet Dermatol. 2008; 7(1): 50–54.
  35. Pickett A, Dodd S, Rzany B. Confusion about diffusion and the art of misinterpreting data when comparing different botulinum toxins used in aesthetic applications. J Cosmet Laser Ther. 2008; 10(3): 181–183.
  36. Aoki KR, Ranoux D, Wissel J. Using translational medicine to understand clinical differences between botulinum toxin formulations. Eur J Neurol. 2006; 13 Suppl 4: 10–19.
  37. Dysport® (abobotulinumtoxinA) [prescribing information]. Boulogne-Billancourt: IpsenBiopharm Ltd; 2012. Accessed October. ; 8: 2020.
  38. Coté TR, Mohan AK, Polder JA, et al. Botulinum toxin type A injections: adverse events reported to the US Food and Drug Administration in therapeutic and cosmetic cases. J Am Acad Dermatol. 2005; 53(3): 407–415.
  39. Food and Drug Administration. Letter Re: Docket No FDA-2008-P-0061. April 30, 2009. Silver Spring, MD: US Food and Drug Administration; 2009. Available at: http://www.fda.gov/downloads/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/UCM143989.pdf. Accessed October. ; 8: 2020.
  40. Ramirez-Castaneda J, Jankovic J, Comella C, et al. Diffusion, spread, and migration of botulinum toxin. Mov Disord. 2013; 28(13): 1775–1783.
  41. Yiannakopoulou E. Serious and long-term adverse events associated with the therapeutic and cosmetic use of botulinum toxin. Pharmacology. 2015; 95(1-2): 65–69.
  42. Kutschenko A, Manig A, Reinert MC, et al. In-vivo comparison of the neurotoxic potencies of incobotulinumtoxinA, onabotulinumtoxinA, and abobotulinumtoxinA. Neurosci Lett. 2016; 627: 216–221.
  43. Trindade de Almeida AR, Marques E, de Almeida J, et al. Pilot study comparing the diffusion of two formulations of botulinum toxin type A in patients with forehead hyperhidrosis. Dermatol Surg. 2007; 33(1 Spec No.): S37–S43.
  44. Kerscher M, Roll S, Becker A, et al. Comparison of the spread of three botulinum toxin type A preparations. Arch Dermatol Res. 2012; 304(2): 155–161.
  45. Hexsel D, Dal'Forno T, Hexsel C, et al. A randomized pilot study comparing the action halos of two commercial preparations of botulinum toxin type A. Dermatol Surg. 2008; 34(1): 52–59.
  46. Sattler G, Callander MJ, Grablowitz D, et al. Noninferiority of incobotulinumtoxinA, free from complexing proteins, compared with another botulinum toxin type A in the treatment of glabellar frown lines. Dermatol Surg. 2010; 36 Suppl 4: 2146–2154.
  47. Carli L, Montecucco C, Rossetto O. Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve. 2009; 40(3): 374–380.
  48. Brodsky MA, Swope DM, Grimes D. Diffusion of botulinum toxins. Tremor Other Hyperkinet Mov (N Y). 2012; 2.
  49. Girlanda P, Vita G, Nicolosi C, et al. Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system. J Neurol Neurosurg Psychiatry. 1992; 55(9): 844–845.
  50. Caleo M, Spinelli M, Colosimo F, et al. Transynaptic Action of Botulinum Neurotoxin Type A at Central Cholinergic Boutons. J Neurosci. 2018; 38(48): 10329–10337.
  51. Antonucci F, Rossi C, Gianfranceschi L, et al. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci. 2008; 28(14): 3689–3696.
  52. Restani L, Antonucci F, Gianfranceschi L, et al. Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci. 2011; 31(44): 15650–15659.
  53. Restani L, Novelli E, Bottari D, et al. Botulinum neurotoxin A impairs neurotransmission following retrograde transynaptic transport. Traffic. 2012; 13(8): 1083–1089.
  54. Wang T, Martin S, Papadopulos A, et al. Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a. J Neurosci. 2015; 35(15): 6179–6194.
  55. Maday S, Holzbaur ELF. Autophagosome assembly and cargo capture in the distal axon. Autophagy. 2012; 8(5): 858–860.
  56. Harper CB, Martin S, Nguyen TH, et al. Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J Biol Chem. 2011; 286(41): 35966–35976.
  57. Restani L, Giribaldi F, Manich M, et al. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog. 2012; 8(12): e1003087.
  58. Barbanti P, Ferroni P. Onabotulinum toxin A in the treatment of chronic migraine: patient selection and special considerations. J Pain Res. 2017; 10: 2319–2329.
  59. Simpson L. The life history of a botulinum toxin molecule. Toxicon. 2013; 68: 40–59.
  60. Joshi SG, Elias M, Singh A, et al. Modulation of botulinum toxin-induced changes in neuromuscular function with antibodies directed against recombinant polypeptides or fragments. Neuroscience. 2011; 179: 208–222.
  61. Chen F, Kuziemko GM, Amersdorfer P, et al. Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms. Infect Immun. 1997; 65(5): 1626–1630.
  62. BOTOX® (onabotulinumtoxinA) [prescribing information]. Irvine, CA: Allergan, Inc.; 2013. , Accessed October. ; 8: 2020.
  63. Brin MF, Comella CL, Jankovic J, et al. CD-017 BoNTA Study Group. Long-term treatment with botulinum toxin type A in cervical dystonia has low immunogenicity by mouse protection assay. Mov Disord. 2008; 23(10): 1353–1360.
  64. FDA Approval Package for Xeomin® (incobotulinumtoxinA) Injection. vol Application Number 125360 [webpage on the Internet]. Silver Spring, MD: US Food and Drug Administration; 2010. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/125360s0000TOC.cfm. Accessed October. 2010; 8: 2020.
  65. Fabbri M, Leodori G, Fernandes RM, et al. Neutralizing Antibody and Botulinum Toxin Therapy: A Systematic Review and Meta-analysis. Neurotox Res. 2016; 29(1): 105–117.
  66. Wissel J, Bensmail D, Ferreira JJ, et al. TOWER study investigators. Safety and efficacy of incobotulinumtoxinA doses up to 800 U in limb spasticity: The TOWER study. Neurology. 2017; 88(14): 1321–1328.
  67. Naumann M, Dressler D, Hallett M, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon. 2013; 67: 141–152.
  68. Jost WH, Benecke R, Hauschke D, et al. Clinical and pharmacological properties of incobotulinumtoxinA and its use in neurological disorders. Drug Des Devel Ther. 2015; 9: 1913–1926.
  69. Schantz E, Johnson E. Dose standardisation of botulinum toxin. The Lancet. 1990; 335(8686): 421.
  70. Sesardic T. Bioassays for evaluation of medical products derived from bacterial toxins. Curr Opin Microbiol. 2012; 15(3): 310–316.
  71. Hunt T, Clarke K. Potency evaluation of a formulated drug product containing 150-kd botulinum neurotoxin type A. Clin Neuropharmacol. 2009; 32(1): 28–31.
  72. Panjwani N, O'Keeffe R, Pickett A. Biochemical, functional and potency characteristics of type A botulinum toxin in clinical use. The Botulinum J. 2008; 1(1): 153.
  73. Dressler D, Mander G, Fink K. Measuring the potency labelling of onabotulinumtoxinA (Botox(®)) and incobotulinumtoxinA (Xeomin (®)) in an LD50 assay. J Neural Transm (Vienna). 2012; 119(1): 13–15.
  74. Sesardic D, Leung T, Gaines Das R. Role for standards in assays of botulinum toxins: international collaborative study of three preparations of botulinum type A toxin. Biologicals. 2003; 31(4): 265–276.
  75. Dashtipour K, Pedouim F. Botulinum Toxin: Preparations for Clinical Use, Immunogenicity, Side Effects, and Safety Profile. Semin Neurol. 2016; 36(1): 29–33.
  76. Scaglione F. Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice. Toxins (Basel). 2016; 8(3).
  77. Rosales RL, Bigalke H, Dressler D. Pharmacology of botulinum toxin: differences between type A preparations. Eur J Neurol. 2006; 13 Suppl 1: 2–10.
  78. Brown M, Nicholson G, Ardila MC, et al. Comparative evaluation of the potency and antigenicity of two distinct BoNT/A-derived formulations. J Neural Transm (Vienna). 2013; 120(2): 291–298.
  79. Hunt T, Clarke K, Rupp D, et al. IncobotulinumtoxinA drug product demonstrates lower potency when compared to onabotulinumtoxinA drug product with concurrent lower light-chain activity and atypical substrate cleavage. Toxicon. 2013; 68: 114.
  80. Ferrari A, Manca M, Tugnoli V, et al. Pharmacological differences and clinical implications of various botulinum toxin preparations: a critical appraisal. Funct Neurol. 2018; 33(1): 7–18.
  81. Field M, Splevins A, Picaut P, et al. AbobotulinumtoxinA (Dysport), OnabotulinumtoxinA (Botox), and IncobotulinumtoxinA (Xeomin) Neurotoxin Content and Potential Implications for Duration of Response in Patients. Toxins (Basel). 2018; 10(12).
  82. Allergan, Ltd. BOTOX® 100 U. Summary of product characteristics [webpage on the Internet]. Surrey, UK: Datapharm Communications Ltd; 2013 [updated December 12, 2012]. Available from: http://www.medicines.org.uk/emc/medicine/112. Accessed October. ; 8: 2020.
  83. BOTOX® (onabotulinumtoxinA) [prescribing information]. Buenos Aires, Argentina: Allergan, Inc. ; 2011.