Vol 55, No 5 (2021)
Review Article
Published online: 2021-08-11

open access

Page views 7615
Article views/downloads 1538
Get Citation

Connect on Social Media

Connect on Social Media

Cerebral microbleeds in neurological practice: concepts, diagnostics and clinical aspects

Aleksandra Wach-Klink1, Ewa Iżycka-Świeszewska23, Grzegorz Kozera4, Piotr Sobolewski15
Pubmed: 34379320
Neurol Neurochir Pol 2021;55(5):450-461.


Introduction: Due to the widespread use of magnetic resonance imaging (MRI) in neurological diagnostics, the number of patients detected as having cerebral microbleeds (CMBs) continues to increase. However, their clinical impact still remains controversial, especially the question of whether CMBs significantly increase the risk of life-threatening intracerebral haemorrhage (ICH) in patients undergoing intravenous thrombolysis (IVT) or endovascular thrombectomy (EVT), or in patients on anticoagulant therapy or statins. State of the art: The term ‘CMB’ is a radiological concept that aims to illustrate microscopic pathology of perivascular hemosiderin deposits corresponding most probably to small foci of past bleeding. MRI images in sequence T2*-GRE and susceptibility-weighted imaging (SWI) are used for a diagnosis of a CMB. This review summarises the current knowledge regarding the definition, prevalence, genetics, risk factors, radiological diagnosis and differential diagnosis of a CMB. We discuss its role as an indicator of future ischaemic or haemorrhagic events in high risk patients or those on antiplatelet or anticoagulant therapy, and its prognostic value for reperfusion strategies and for the development of dementia. Future direction: The place of CMBs in current guidelines is explored herein. It must be emphasised that the recommendations relating to CMBs are expert opinions. Therefore, at the end of this review, we pose a number of questions that future clinical trials should answer.

Article available in PDF format

View PDF Download PDF file


  1. Ding J, Sigurdsson S, Garcia M, et al. Risk factors associated with incident cerebral microbleeds according to location in older people: the age, gene/environment susceptibility (AGES)-Reykjavik study. JAMA Neurol. 2015; 72(6): 682–688.
  2. Poels MMF, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010; 41(10 Suppl): S103–S106.
  3. Kakar P, Charidimou A, Werring DJ. Cerebral microbleeds: a new dilemma in stroke medicine. JRSM Cardiovasc Dis. 2012; 1(8): 2048004012474754.
  4. Yamashiro K, Tanaka R, Shimo Y, et al. The prevalence and risk factors of cerebral microbleeds in patients with Parkinson's disease. Parkinsonism Relat Disord. 2015; 21(9): 1076–1081.
  5. Charidimou A, Shoamanesh A, Al-Shahi Salman R, et al. Cerebral amyloid angiopathy, cerebral microbleeds and implications for anticoagulation decisions: The need for a balanced approach. Int J Stroke. 2018; 13(2): 117–120.
  6. Choi KH, Kim JH, Kang KW, et al. Impact of microbleeds on outcome following recanalization in patients with acute ischemic stroke. Stroke. 2018 [Epub ahead of print]: STROKEAHA118023084.
  7. Kirchhof P, Benussi S, Kotecha D, et al. ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016; 37(38): 2893–2962.
  8. Powers W, Rabinstein A, Ackerson T, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Association. Stroke. 2018; 49(3): e46–99.
  9. Błażejewska-Hyżorek B, Czernuszenko A, Członkowska A, et al. Wytyczne postępowania w udarze mózgu. Polski Przegląd Neurologiczny. 2019; 15(supl. A): 30–92.
  10. Graff-Radford J, Aakre JA, Knopman DS, et al. Prevalence and heterogeneity of cerebrovascular disease imaging lesions. Mayo Clin Proc. 2020; 95(6): 1195–1205.
  11. Janaway BM, Simpson JE, Hoggard N, et al. MRC Cognitive Function and Ageing Neuropathology Study. Brain haemosiderin in older people: pathological evidence for an ischaemic origin of magnetic resonance imaging (MRI) microbleeds. Neuropathol Appl Neurobiol. 2014; 40(3): 258–269.
  12. Vernooij MW, Ikram MA, Wielopolski PA, et al. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection. Radiology. 2008; 248(1): 272–277.
  13. Cordonnier C, van de, Sluimer JD, et al. Prevalence and severity of microbleeds in a memory clinic setting. Neurology. 2006; 66(9): 1356–1360.
  14. Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol. 1999; 20(4): 637–642.
  15. Greenberg SM, Vernooij MW, Cordonnier C, et al. Microbleed Study Group. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009; 8(2): 165–174.
  16. Jeerakathil T, Wolf PA, Beiser A, et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke. 2004; 35(8): 1831–1835.
  17. Elmståhl S, Ellström K, Siennicki-Lantz A, et al. Association between cerebral microbleeds and hypertension in the Swedish general population "Good Aging in Skåne" study. J Clin Hypertens (Greenwich). 2019; 21(8): 1099–1107.
  18. Nighoghossian N, Hermier M, Adeleine P, et al. Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke: a gradient-echo T2*-weighted brain MRI study. Stroke. 2002; 33(3): 735–742.
  19. Orken DN, Kenangil G, Uysal E, et al. Lack of association between cerebral microbleeds and low serum cholesterol in patients with acute intracerebral hemorrhage. Clin Neurol Neurosurg. 2010; 112(8): 668–671.
  20. Lyu L, Shen J, Zeng C, et al. Cerebral microbleeds are associated with blood pressure levels in individuals with hypertension. Clin Exp Hypertens. 2020; 42(4): 328–334.
  21. Horstmann S, Möhlenbruch M, Wegele C, et al. Prevalence of atrial fibrillation and association of previous antithrombotic treatment in patients with cerebral microbleeds. Eur J Neurol. 2015; 22(10): 1355–1362.
  22. Liu J, Kou Z, Tian Y. Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques. Neural Regen Res. 2014; 9(12): 1222–1230.
  23. Wahl M, Anwar M, Hess CP, et al. Relationship between radiation dose and microbleed formation in patients with malignant glioma. Radiat Oncol. 2017; 12(1): 126.
  24. Murai R, Kaji S, Kitai T, et al. The clinical significance of cerebral microbleeds in infective endocarditis patients. Semin Thorac Cardiovasc Surg. 2019; 31(1): 51–58.
  25. van Bussel BCT, Henry RMA, Schalkwijk CG, et al. Fish consumption in healthy adults is associated with decreased circulating biomarkers of endothelial dysfunction and inflammation during a 6-year follow-up. J Nutr. 2011; 141(9): 1719–1725.
  26. Lee SH, Lee ST, Kim BJ, et al. Dynamic temporal change of cerebral microbleeds: long-term follow-up MRI study. PLoS One. 2011; 6(10): e25930.
  27. Lammie GA. Pathology of small vessel stroke. Br Med Bull. 2000; 56(2): 296–306.
  28. Schreiber S, Wilisch-Neumann A, Schreiber F, et al. Invited Review: The spectrum of age-related small vessel diseases: potential overlap and interactions of amyloid and nonamyloid vasculopathies. Neuropathol Appl Neurobiol. 2020; 46(3): 219–239.
  29. Kövari E, Charidimou A, Herrmann FR, et al. No neuropathological evidence for a direct topographical relation between microbleeds and cerebral amyloid angiopathy. Acta Neuropathol Commun. 2015; 3: 49.
  30. Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer's disease. Acta Neuropathol. 2016; 131(5): 659–685.
  31. Yates PA, Villemagne VL, Ellis KA, et al. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol. 2014; 4(205).
  32. Wise IA, Charchar FJ. Epigenetic modifications in essential hypertension. Int J Mol Sci. 2016; 17(4): 451.
  33. Conijn MMA, Geerlings MI, Biessels GJ, et al. Cerebral microbleeds on MR imaging: comparison between 1.5 and 7T. AJNR Am J Neuroradiol. 2011; 32(6): 1043–1049.
  34. Nandigam RNK, Viswanathan A, Delgado P, et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol. 2009; 30(2): 338–343.
  35. Greenberg SM, Nandigam RN, Delgado P, et al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke. 2009; 40(7): 2382–2386.
  36. Charidimou A, Shams S, Romero JR, et al. International META-MICROBLEEDS Initiative. Clinical significance of cerebral microbleeds on MRI: A comprehensive meta-analysis of risk of intracerebral hemorrhage, ischemic stroke, mortality, and dementia in cohort studies (v1). Int J Stroke. 2018; 13(5): 454–468.
  37. Yakushiji Y, Wilson D, Ambler G, et al. Distribution of cerebral microbleeds in the East and West: Individual participant meta-analysis. Neurology. 2019; 92(10): e1086–e1097.
  38. Graff-Radford J, Lesnick T, Rabinstein AA, et al. Cerebral microbleed incidence, relationship to amyloid burden: The Mayo Clinic Study of Aging. Neurology. 2020; 94(2): e190–e199.
  39. Renard D, Tatu L, Thouvenot E. Infratentorial cerebral microbleeds in patients with cerebral amyloid angiopathy. J Stroke Cerebrovasc Dis. 2018; 27(9): 2534–2537.
  40. Gyanwali B, Shaik MA, Venketasubramanian N, et al. Mixed-location cerebral microbleeds: An imaging biomarker for cerebrovascular pathology in cognitive impairment and dementia in a memory clinic population. J Alzheimers Dis. 2019; 71(4): 1309–1320.
  41. Kim KJ, Bae YJ, Kim JM, et al. The prevalence of cerebral microbleeds in non-demented Parkinson's disease patients. J Korean Med Sci. 2018; 33(46): e289.
  42. Yakushiji Y, Yokota C, Yamada N, et al. Clinical characteristics by topographical distribution of brain microbleeds, with a particular emphasis on diffuse microbleeds. J Stroke Cerebrovasc Dis. 2011; 20(3): 214–221.
  43. Lim JS, Hong KS, Kim GM, et al. Cerebral microbleeds and early recurrent stroke after transient ischemic attack: results from the Korean Transient Ischemic Attack Expression Registry. JAMA Neurol. 2015; 72(3): 301–308.
  44. Akoudad S, Portegies MLP, Koudstaal PJ, et al. Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam study. Circulation. 2015; 132(6): 509–516.
  45. Imaizumi T, Horita Y, Hashimoto Y, et al. Dotlike hemosiderin spots on T2*-weighted magnetic resonance imaging as a predictor of stroke recurrence: a prospective study. J Neurosurg. 2004; 101(6): 915–920.
  46. Soo YOY, Yang SR, Lam WWM, et al. Risk vs benefit of anti-thrombotic therapy in ischaemic stroke patients with cerebral microbleeds. J Neurol. 2008; 255(11): 1679–1686.
  47. Pasquini M, Benedictus MR, Boulouis G, et al. Incident cerebral microbleeds in a cohort of intracerebral hemorrhage. Stroke. 2016; 47(3): 689–694.
  48. Benedictus MR, Prins ND, Goos JDC, et al. Microbleeds, mortality, and stroke in Alzheimer disease: The MISTRAL study. JAMA Neurol. 2015; 72(5): 539–545.
  49. Akoudad S, Wolters FJ, Viswanathan A, et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol. 2016; 73(8): 934–943.
  50. Miwa K, Tanaka M, Okazaki S, et al. Endoscopic follow-up of 3 cases with gastrointestinal tract involvement of mantle cell lymphoma. Intern Med. 2010; 49(3): 231–235.
  51. van Uden IWM, van der Holst HM, Tuladhar AM, et al. White matter and hippocampal volume predict the risk of dementia in patients with cerebral small vessel disease: The RUN DMC study. J Alzheimers Dis. 2016; 49(3): 863–873.
  52. Miwa K, Tanaka M, Okazaki S, et al. Endoscopic follow-up of 3 cases with gastrointestinal tract involvement of mantle cell lymphoma. Intern Med. 2010; 49(3): 231–235.
  53. Gregoire SM, Smith K, Jäger HR, et al. Cerebral microbleeds and long-term cognitive outcome: longitudinal cohort study of stroke clinic patients. Cerebrovasc Dis. 2012; 33(5): 430–435.
  54. Gyawali B, Shaik MA, Tan CS, et al. Mixed-location cerebral microbleeds as a biomarker of neurodegeneration in a memory clinic population. Aging (Albany NY. 2019; 11(22): 10581–10596.
  55. Kim JM. The prevalence of cerebral microbleeds in patients with Parkinson’s disease and multiple system atrophy [abstract]. Mov Disord. 2017;32(Suppl 2). https://www.mdsabstracts.org/abstract/the-prevalence-of-cerebral-microbleeds-in-patients-with-parkinsons-disease-and-multiple-system-atrophy/ (15.01.2021).
  56. Kim SH, Shin DW, Yun JM, et al. Correction: Kidney dysfunction and cerebral microbleeds in neurologically healthy adults. PLoS One. 2017; 12(4): e0176901.
  57. Naganuma T, Takemoto Y, Shoji T, et al. Cerebral microbleeds predict intracerebral hemorrhage in hemodialysis patients. Stroke. 2015; 46(8): 2107–2112.
  58. Qian Y, Zheng Ke, Wang H, et al. Cerebral microbleeds and their influence on cognitive impairment in Dialysis patients. Brain Imaging Behav. 2021; 15(1): 85–95.
  59. Sakuta K, Yaguchi H, Sato T, et al. The impact of cerebral microbleeds presence on outcome following minor stroke treated with antiplatelet therapy. Front Neurol. 2020; 11: 522.
  60. Romero JR, Preis SR, Beiser A, et al. Cerebral microbleeds as predictors of mortality: The framingham heart study. Stroke. 2017; 48(3): 781–783.
  61. Akoudad S, Ikram MA, Koudstaal PJ, et al. Cerebral microbleeds and the risk of mortality in the general population. Eur J Epidemiol. 2013; 28(10): 815–821.
  62. Altmann-Schneider I, Trompet S, de Craen AJM, et al. Cerebral microbleeds are predictive of mortality in the elderly. Stroke. 2011; 42(3): 638–644.
  63. Arca KN, Demaerschalk BM, Almader-Douglas D, et al. Does high cerebral microbleed burden increase the risk of intracerebral hemorrhage after intravenous tissue plasminogen activator for acute ischemic stroke? Neurologist. 2019; 24(1): 40–43.
  64. Schlemm L, Endres M, Werring DJ, et al. Benefit of intravenous thrombolysis in acute ischemic stroke patients with high cerebral microbleed burden. Stroke. 2020; 51(1): 232–239.
  65. Wang S, Lv Y, Zheng X, et al. The impact of cerebral microbleeds on intracerebral hemorrhage and poor functional outcome of acute ischemic stroke patients treated with intravenous thrombolysis: a systematic review and meta-analysis. J Neurol. 2017; 264(7): 1309–1319.
  66. Dannenberg S, Scheitz JF, Rozanski M, et al. Number of cerebral microbleeds and risk of intracerebral hemorrhage after intravenous thrombolysis. Stroke. 2014; 45(10): 2900–2905.
  67. Turc G, Sallem A, Moulin S, et al. Microbleed status and 3-month outcome after intravenous thrombolysis in 717 patients with acute ischemic stroke. Stroke. 2015; 46(9): 2458–2463.
  68. Yan S, Jin X, Zhang X, et al. Extensive cerebral microbleeds predict parenchymal haemorrhage and poor outcome after intravenous thrombolysis. J Neurol Neurosurg Psychiatry. 2015; 86(11): 1267–1272.
  69. Werring DJ, Charidimou A, Charidimou A, et al. authors. Microbleeds, cerebral hemorrhage, and functional outcome after stroke thrombolysis. Stroke. 2017; 48(8): 2084–2090.
  70. Shoamanesh A, Kwok CS, Lim PA, et al. Postthrombolysis intracranial hemorrhage risk of cerebral microbleeds in acute stroke patients: a systematic review and meta-analysis. Int J Stroke. 2013; 8(5): 348–356.
  71. Kakuda W, Thijs VN, Lansberg MG, et al. DEFUSE Investigators. R Bammer, L Wechsler, S Kemp, Difuse Investigator. Clinical importance of microbleeds in patients receiving IV thrombolysis. Neurology. 2005; 65(98): 1175–1178.
  72. Zand R, Tsivgoulis G, Singh M, et al. Safety of intravenous thrombolysis among stroke patients taking new oral anticoagulants--case series and systematic review of reported cases. J Stroke Cerebrovasc Dis. 2015; 24(12): 2685–2693.
  73. Tsivgoulis G, Zand R, Katsanos AH, et al. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: A meta-analysis. JAMA Neurol. 2016; 73(6): 675–683.
  74. Yan J, Qiu J, Wu X, et al. Pretreatment cerebral microbleeds and symptomatic intracerebral hemorrhage post-thrombolysis: a systematic review and meta-analysis. J Neurol. 2020; 267(2): 301–307.
  75. Choi KH, Kim JH, Kang KW, et al. Impact of microbleeds on outcome following recanalization in patients with acute ischemic stroke. Stroke. 2018 [Epub ahead of print]: STROKEAHA118023084.
  76. Shi ZS, Duckwiler GR, Jahan R, et al. Mechanical thrombectomy for acute ischemic stroke with cerebral microbleeds. J Neurointerv Surg. 2016; 8(6): 563–567.
  77. Wu X, Yan J, Ye H, et al. Pre-treatment cerebral microbleeds and intracranial hemorrhage in patients with ischemic stroke receiving endovascular therapy: a systematic review and meta-analysis. J Neurol. 2020; 267(5): 1227–1232.
  78. Kakumoto K, Matsumoto S, Nakahara I, et al. Rapid formation of cerebral microbleeds after carotid artery stenting. Cerebrovasc Dis Extra. 2012; 2(1): 9–16.
  79. Ito AO, Shindo A, Ii Y, et al. Microbleeds after carotid artery stenting: small embolism may induce cerebral microbleeds. Cerebrovasc Dis Extra. 2019; 9(2): 57–65.
  80. Müller MD, Jongen LM, Altinbas A, et al. ICSS-MRI Study Investigators. Silent intracerebral hemorrhage in patients randomized to stenting or endarterectomy for symptomatic carotid stenosis. J Stroke. 2019; 21(1): 116–119.
  81. Liu S, Li C. Antiplatelet drug use and cerebral microbleeds: A meta-analysis of published studies. J Stroke Cerebrovasc Dis. 2015; 24(10): 2236–2244.
  82. Lovelock CE, Cordonnier C, Naka H, et al. Edinburgh Study Group. Antithrombotic drug use, cerebral microbleeds, and intracerebral hemorrhage: a systematic review of published and unpublished studies. Stroke. 2010; 41(6): 1222–1228.
  83. Wang DN, Hou XW, Yang BW, et al. Quantity of cerebral microbleeds, antiplatelet therapy, and intracerebral hemorrhage outcomes: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2015; 24(12): 2728–2737.
  84. Qiu J, Ye H, Wang J, et al. Antiplatelet therapy, cerebral microbleeds, and intracerebral hemorrhage: A meta-analysis. Stroke. 2018; 49(7): 1751–1754.
  85. Ge L, Ouyang X, Ban C, et al. Cerebral microbleeds in patients with ischemic cerebrovascular disease taking aspirin or clopidogrel. Medicine (Baltimore). 2019; 98(9): e14685.
  86. Rockson SG, Albers GW. Comparing the guidelines: anticoagulation therapy to optimize stroke prevention in patients with atrial fibrillation. J Am Coll Cardiol. 2004; 43(6): 929–935.
  87. Lioutas VA, Goyal N, Katsanos AH, et al. Clinical outcomes and neuroimaging profiles in nondisabled patients with anticoagulant-related intracerebral hemorrhage. Stroke. 2018; 49(10): 2309–2316.
  88. Wilson D, Seiffge DJ, Traenka C, et al. And the CROMIS-2 collaborators. Outcome of intracerebral hemorrhage associated with different oral anticoagulants. Neurology. 2017; 88(18): 1693–1700.
  89. Purrucker JC, Wolf M, Haas K, et al. the RASUNOA Investigators. Microbleeds in ischemic vs hemorrhagic strokes on novel oral anticoagulants. Acta Neurol Scand. 2018; 138(2): 163–169.
  90. Lioutas VA, Goyal N, Katsanos AH, et al. Microbleed prevalence and burden in anticoagulant-associated intracerebral bleed. Ann Clin Transl Neurol. 2019; 6(8): 1546–1551.
  91. Wilson D, Ambler G, Shakeshaft C, et al. CROMIS-2 collaborators. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study [published correction appears in 2018; 1796): 578]. Lancet Neurol. 2018; 17(6): 539–547.
  92. Charidimou A, Karayiannis C, Song TJ, et al. International META-MICROBLEEDS Initiative. Brain microbleeds, anticoagulation, and hemorrhage risk: Meta-analysis in stroke patients with AF. Neurology. 2017; 89(23): 2317–2326.
  93. Haussen DC, Henninger N, Kumar S, et al. Statin use and microbleeds in patients with spontaneous intracerebral hemorrhage. Stroke. 2012; 43(10): 2677–2681.
  94. Ziff OJ, Banerjee G, Ambler G, et al. Statins and the risk of intracerebral haemorrhage in patients with stroke: systematic review and metaanalysis. J Neurol Neurosurg Psychiatry. 2019; 90(1): 75–83.
  95. Wieberdink RG, Poels MMF, Vernooij MW, et al. Serum lipid levels and the risk of intracerebral hemorrhage: the Rotterdam Study. Arterioscler Thromb Vasc Biol. 2011; 31(12): 2982–2989.
  96. Katsanos AH, Lioutas VA, Charidimou A, et al. International META-MICROBLEEDS Initiative. Statin treatment and cerebral microbleeds: A systematic review and meta-analysis. J Neurol Sci. 2021; 420: 117224.
  97. Demaerschalk BM, Kleindorfer DO, Adeoye OM, et al. American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016; 47(2): 581–641.
  98. Smith EE, Saposnik G, Biessels GJ, et al. American Heart Association Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Functional Genomics and Translational Biology; and Council on Hypertension. Prevention of stroke in patients with silent cerebrovascular disease: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017; 48(2): e44–e71.
  99. Ahmed N, Audebert H, Turc G, et al. Consensus statements and recommendations from the ESO-Karolinska Stroke Update Conference, Stockholm 11-13 November 2018. Eur Stroke J. 2019; 4(4): 307–317.
  100. Canavero I, Micieli G, Paciaroni M. Decision algorithms for direct oral anticoagulant use in patients with nonvalvular atrial fibrillation: A practical guide for neurologists. Clin Appl Thromb Hemost. 2018; 24(3): 396–404.

Neurologia i Neurochirurgia Polska