English Polski
Tom 16, Nr 2 (2023)
Artykuł przeglądowy
Opublikowany online: 2023-04-28

dostęp otwarty

Wyświetlenia strony 437
Wyświetlenia/pobrania artykułu 432
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Wpływ stresu proliferacyjnego na nabytą i wrodzoną odpowiedź immunologiczną

Michał Cezary Czarnogórski1, Jacek M. Witkowski2, Jan M. Zaucha1
Journal of Transfusion Medicine 2023;16(2):97-102.

Streszczenie

Starzenie się człowieka jest wciąż uznawane za jedno z najbardziej złożonych zjawisk w biologii. Dotyka wszystkich komórek i tkanek, prowadząc do stopniowej utraty ich funkcji, spadku ich aktywności podziałowej oraz wadliwej odpowiedzi komórkowej na bodźce. Jednym z głównych mechanizmów starzenia komórkowego jest stres proliferacyjny, który skutkuje skracaniem się telomerów, uszkodzeniem DNA oraz odkładaniem się w komórkach białek wtrętowych. Allogeniczne przeszczepienie krwiotwórczych komórek progenitorowych (allo-HCT) może służyć jako dobry model starzenia komórkowego. W niniejszej pracy podsumowano proces starzenia się układu immunologicznego i wpływ stresu proliferacyjnego na wrodzoną i nabytą odpowiedź immunologiczną, której wykładnikiem są zjawiska immunosenescencji oraz inflammagingu, w kontekście jatrogennego stresu proliferacyjnego, indukowanego przez allo-HCT.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Fulop T, Larbi A, Hirokawa K, et al. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol. 2020; 42(5): 521–536.
  2. Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2017; 8: 1960.
  3. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015; 350(6265): 1193–1198.
  4. Blackburn EH. The molecular structure of centromeres and telomeres. Annu Rev Biochem. 1984; 53: 163–194.
  5. HAYFLICK L, MOORHEAD PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585–621.
  6. Olovnikov AM. [The role of incomplete terminal repair of chromosomal DNA in the aging of neurons and postmitotic organisms]. Izv Akad Nauk Ser Biol. 1995(4): 504–507.
  7. Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000; 908: 244–254.
  8. Bektas A, Schurman SH, Sen R, et al. Human T cell immunosenescence and inflammation in aging. J Leukoc Biol. 2017; 102(4): 977–988.
  9. Fulop T, Witkowski JM, Olivieri F, et al. The integration of inflammaging in age-related diseases. Semin Immunol. 2018; 40: 17–35.
  10. Franceschi C, Monti D, Sansoni P, et al. The immunology of exceptional individuals: the lesson of centenarians. Immunol Today. 1995; 16(1): 12–16.
  11. Schwarz TF, Volpe S, Catteau G, et al. Persistence of immune response to an adjuvanted varicella-zoster virus subunit vaccine for up to year nine in older adults. Hum Vaccin Immunother. 2018; 14(6): 1370–1377.
  12. Daste A, Domblides C, Gross-Goupil M, et al. Immune checkpoint inhibitors and elderly people: A review. Eur J Cancer. 2017; 82: 155–166.
  13. Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128(1):92–105. .
  14. Morrisette-Thomas V, Cohen AA, Fülöp T, et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev. 2014; 139: 49–57.
  15. Arai Y, Martin-Ruiz CM, Takayama M, et al. Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine. 2015; 2(10): 1549–1558.
  16. Witkowski JM. Immune system aging and the aging-related diseases in the COVID-19 era. Immunol Lett 2022;243:19–27. .
  17. Fulop T, Larbi A, Pawelec G, et al. Immunology of Aging: the Birth of Inflammaging. Clin Rev Allergy Immunol. 2023; 64(2): 109–122.
  18. Horvath S, Pirazzini C, Bacalini MG, et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY). 2015; 7(12): 1159–1170.
  19. Fulop T, Dupuis G, Baehl S, et al. From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology. 2016; 17(1): 147–157.
  20. Geeraerts X, Bolli E, Fendt SM, et al. Macrophage Metabolism As Therapeutic Target for Cancer, Atherosclerosis, and Obesity. Front Immunol. 2017; 8: 289.
  21. Magrone T, Jirillo E. Disorders of innate immunity in human ageing and effects of nutraceutical administration. Endocr Metab Immune Disord Drug Targets. 2014; 14(4): 272–282.
  22. Fulop T, Larbi A, Douziech N, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004. ; 3(4): 217–226.
  23. Bryl E, Witkowski JM. Decreased proliferative capability of CD4(+) cells of elderly people is associated with faster loss of activation-related antigens and accumulation of regulatory T cells. Exp Gerontol. 2004; 39(4): 587–595.
  24. Akbar AN, Terry L, Timms A, et al. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988; 140(7): 2171–2178.
  25. Willinger T, Freeman T, Hasegawa H, et al. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol. 2005; 175(9): 5895–5903.
  26. Fülöp T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013. ; 4: 271.
  27. Muller GC, Gottlieb MGV, Correa BL et al. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol 2015;296(2):149–154. .
  28. Sainz T, Serrano-Villar S, Díaz L, et al. The CD4/CD8 ratio as a marker T-cell activation, senescence and activation/exhaustion in treated HIV-infected children and young adults. AIDS. 2013; 27(9): 1513–1516.
  29. Gui J, Mustachio LM, Su D-M, et al. Thymus Size and Age-related Thymic Involution: Early Programming, Sexual Dimorphism, Progenitors and Stroma. Aging Dis. 2012; 3(3): 280–290.
  30. Aspinall R, Andrew D. Thymic involution in aging. J Clin Immunol. 2000; 20(4): 250–256.
  31. Goronzy JJ, Fang F, Cavanagh MM, et al. Naive T cell maintenance and function in human aging. J Immunol. 2015; 194(9): 4073–4080.
  32. Pawelec G. Immunosenescence and cancer. Biogerontology. 2017; 18(4): 717–721.
  33. Saule P, Trauet J, Dutriez V et al. Accumulation of memory T cells from childhood to old age: Central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech Ageing Dev 2006;127(3):274–281. .
  34. Derhovanessian E, Maier AB, Hähnel K, et al. Lower proportion of naïve peripheral CD8+ T cells and an unopposed pro-inflammatory response to human Cytomegalovirus proteins in vitro are associated with longer survival in very elderly people. Age (Dordr). 2013 Aug. ; 35(4): 1387–99.
  35. McElhaney JE, Garneau H, Camous X, et al. Predictors of the antibody response to influenza vaccination in older adults with type 2 diabetes. BMJ Open Diabetes Res Care. 2015; 3(1): e000140.
  36. Sansoni P, Vescovini R, Fagnoni FF, et al. New advances in CMV and immunosenescence. Exp Gerontol. 2014; 55: 54–62.
  37. Cuollo L, Antonangeli F, Santoni A, et al. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Vol. Biology (Basel). 2020; 9(12): 485.
  38. Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008; 6(12): 2853–2868.
  39. Campisi J. Cellular Senescence and Lung Function during Aging. Yin and Yang. Ann Am Thorac Soc. 2016; 13 Suppl 5(Suppl 5): S402–S406.
  40. Akbar AN, Henson SM, Lanna A. Senescence of T Lymphocytes: Implications for Enhancing Human Immunity. Trends Immunol. 2016; 37(12): 866–876.
  41. Rossi DJ, Jamieson CHM, Weissman IL. Stems cells and the pathways to aging and cancer. Cell. 2008; 132(4): 681–696.
  42. Schoedel KB, Morcos MNF, Zerjatke T, et al. The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood. 2016; 128(19): 2285–2296.
  43. Schuettpelz LG, Link DC. Regulation of hematopoietic stem cell activity by inflammation. Front Immunol. 2013; 4: 204.
  44. Singh S, Jakubison B, Keller JR. Protection of hematopoietic stem cells from stress-induced exhaustion and aging. Curr Opin Hematol. 2020; 27(4): 225–231.
  45. Baldridge MT, King KY, Goodell MA. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 2011; 32(2): 57–65.
  46. Rodrigues-Moreira S, Moreno SG, Ghinatti G, et al. Low-Dose Irradiation Promotes Persistent Oxidative Stress and Decreases Self-Renewal in Hematopoietic Stem Cells. Cell Rep. 2017; 20(13): 3199–3211.
  47. Mathioudakis G, Storb R, McSweeney P, et al. Polyclonal hematopoiesis with variable telomere shortening in human long-term allogeneic marrow graft recipients. Blood. 2000; 96(12): 3991–3994.
  48. Pauw EDe, Otto S, Wijnen J, et al. Long-term follow-up of recipients of allogeneic bone marrow grafts reveals no progressive telomere shortening and provides no evidence for haematopoietic stem cell exhaustion. Br J Haematol. 2002; 116(2): 491–496.
  49. Wynn R, Thornley I, Freedman M, et al. Telomere shortening in leucocyte subsets of long-term survivors of allogeneic bone marrow transplantation. Br J Haematol. 1999; 105(4): 997–1001.
  50. Zaucha JM, Yu C, Mathioudakis G, et al. Hematopoietic responses to stress conditions in young dogs compared with elderly dogs. Blood. 2001; 98(2): 322–327.
  51. Hewitt G, Jurk D, Marques FDM, et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun. 2012; 3: 708.
  52. Czarnogórski MC, Sakowska J, Maziewski M, et al. Ageing-resembling phenotype of long-term allogeneic hematopoietic cells recipients compared to their donors. Immun Ageing. 2022; 19(1): 51.