English Polski
Tom 13, Nr 4 (2020)
Artykuł przeglądowy
Opublikowany online: 2021-01-29

dostęp otwarty

Wyświetlenia strony 481
Wyświetlenia/pobrania artykułu 725
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Rekomendacje dotyczące ograniczania przenoszenia wirusa Zachodniego Nilu (WNV) przez transfuzje krwi oraz jej składników na terenie Polski

Piotr Grabarczyk1, Jowita Niczyporuk2, Piotr Czupryna3, Elżbieta Lachert4, Magdalena Łętowska4
Journal of Transfusion Medicine 2020;13(4):228-238.

Streszczenie

Od wielu lat wirus Zachodniego Nilu znajduje się w centrum zainteresowania transfuzjologów ze względu na udokumentowane przenoszenie przez transfuzje krwi oraz jej składników. W ostatnich latach obserwuje się okresowe zwiększanie liczby zakażeń w Europie (2018 r.) oraz ogniska zakażeń wśród zwierząt oraz u ludzi na terenach, na których dotychczas obecność wirusa nie była obserwowana. W niniejszej pracy dokonano aktualizacji danych dotyczących biologii oraz epidemiologii wirusa Zachodniego Nilu prezentowanych w publikacji „Journal of Transfusion Medicine” [1] oraz przedstawiono propozycje postępowania mającego na celu zapobieganiu przenoszenia wirusa przez transfuzje na wypadek pojawienia się zakażeń ludzi na terenie Polski. Zalecenia krajowe powstały na podstawie rekomendacji międzynarodowych, w wyniku współpracy transfuzjologów ze specjalistami chorób zakaźnych oraz z ośrodkami naukowymi monitorującymi epidemiologie wirusa.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Tkaczuk K, Sulkowska E, Lachert E, et al. Wirus Zachodniego Nilu a bezpieczeństwo przetoczeń krwi i jej składników. Journal of Tranfusion Medicine 2013, tom 6, nr. ; 3: 1–XX.
  2. Smithburn KC, Hughes TP, Burke AW, et al. A Neurotropic Virus Isolated from the Blood of a Native of Uganda 1. Am. J. Trop. Med. Hyg. 1940; s1-20(4): 471–492.
  3. Martin DA, Biggerstaff BJ, Allen B, et al. Use of immunoglobulin m cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol. 2002; 9(3): 544–549.
  4. Knap JP, Kubica-Biernat B. [Did West Nile Fever (WNF) appear in Poland? Position of the Expect Committee appointed by the Chief Sanitary Inspector]. Przegl Epidemiol. 2003; 57(3): 399–404.
  5. De Filette M, Ulbert S, Diamond M, et al. Recent progress in West Nile virus diagnosis and vaccination. Vet Res. 2012; 43: 16.
  6. May FJ, Davis CT, Tesh RB, et al. Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol. 2011; 85(6): 2964–2974.
  7. Mentoor JLD, Lubisi AB, Gerdes T, et al. Full-Genome Sequence of a Neuroinvasive West Nile Virus Lineage 2 Strain from a Fatal Horse Infection in South Africa. Genome Announc. 2016; 4(4).
  8. McMullen AR, Albayrak H, May FJ, et al. Molecular evolution of lineage 2 West Nile virus. J Gen Virol. 2013; 94(Pt 2): 318–325.
  9. Weissenböck H, Hubálek Z, Bakonyi T, et al. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis. 2005; 11(2): 225–231.
  10. Rudolf I, Bakonyi T, Sebesta O, et al. West Nile virus lineage 2 isolated from Culex modestus mosquitoes in the Czech Republic, 2013: expansion of the European WNV endemic area to the North? Euro Surveill. 2014; 19(31): 2–5.
  11. Pesko KN, Ebel GD. West Nile virus population genetics and evolution. Infect Genet Evol. 2012; 12(2): 181–190.
  12. Chancey C, Grinev A, Volkova E, et al. The global ecology and epidemiology of West Nile virus. Biomed Res Int. 2015; 2015: 376230.
  13. Bondre VP, Jadi RS, Mishra AC, et al. West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol. 2007; 88(Pt 3): 875–884.
  14. Prow NA, Hewlett EK, Faddy HM, et al. The Australian Public is Still Vulnerable to Emerging Virulent Strains of West Nile Virus. Front Public Health. 2014; 2: 146.
  15. Moureau G, Cook S, Lemey P, et al. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One. 2015; 10(2): e0117849.
  16. Kondrusik M, Ferenczi E, Zajkowska J, et al. [The evaluation of serum presence of antibodies reacting with West Nile Fever virus (WNV) antigens among inhabitants from Podlaskie and Swietokrzyskie region]. Przegl Epidemiol. 2007; 61(2): 409–416.
  17. Samorek-Salamonowicz E. Wirus Zachodniego Nilu — zagrożenie dla zdrowia publicznego. W: Niczyporuk J.S. (red.). Medycyna Weterynaryjna 2008: 1368–1370.
  18. Kilpatrick A, LaDeau S, Marra P. ECOLOGY OF WEST NILE VIRUS TRANSMISSION AND ITS IMPACT ON BIRDS IN THE WESTERN HEMISPHERE. The Auk. 2007; 124(4): 1121.
  19. Samorek-Salamonowicz E, Niczyporuk JS. West Nile virus other emerging threats to public health. Postępy Mikrobiologii. 2010; 49: 187–90.
  20. Strauss JH, Strauss EG. Viruses and Human Disease, wyd. 2, Academic Press. 2007; 3: 118.
  21. Arjona A, Wang P, Montgomery RR, et al. Innate immune control of West Nile virus infection. Cell Microbiol. 2011; 13(11): 1648–1658.
  22. Colpitts TM, Conway MJ, Montgomery RR, et al. West Nile Virus: biology, transmission, and human infection. Clin Microbiol Rev. 2012; 25(4): 635–648.
  23. Konrad SK, Miller SN. Application of a degree-day model of West Nile virus transmission risk to the East Coast of the United States of America. Geospat Health. 2012; 7(1): 15–20.
  24. West Nile Fever [monograph on the internet]. Epi-News, National surveillance of communicable diseases: Statens Serum Institut; 2003. Available from: http://www ssi dk/English/News/EPI-NEWS/~/media/Indhold/EN%20-%20engelsk/EPI-NEWS/2003/pdf/EPI-NEWS%20-%202003%20-%20No. ; 204: ashx.
  25. Kilpatrick AM, Meola MA, Moudy RM, et al. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog. 2008; 4(6): e1000092.
  26. West Nile Virus MONITOR Surveillance Maps- Clinical Cases and Asymptomatic Infections Canada, October 27, 2012, Public Health Agency of Canada, http://www.phac-aspc.gc.ca/wnv-vwn/map-carte/map-carte-surv2012-eng.php.
  27. Semenza JC, Tran A, Espinosa L, et al. Climate change projections of West Nile virus infections in Europe: implications for blood safety practices. Environ Health. 2016; 15 Suppl 1: 28.
  28. Pridjian G, Sirois PA, McRae S, et al. Prospective study of pregnancy and newborn outcomes in mothers with West nile illness during pregnancy. Birth Defects Res A Clin Mol Teratol. 2016; 106(8): 716–723.
  29. Hermanowska-Szpakowicz T, Grygorczuk S, Kondrusik M, et al. [Infections caused by West Nile virus]. Przegl Epidemiol. 2006; 60(1): 93–98.
  30. West Nile virus infection - Annual Epidemiological Report for 2018, https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-infection-annual-epidemiological-report-2018.
  31. Epidemiological update: West Nile virus transmission season in Europe, 2019, https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2019.
  32. Juricová Z, Pinowski J, Literák I, et al. Antibodies to alphavirus, flavivirus, and bunyavirus arboviruses in house sparrows (Passer domesticus) and tree sparrows (P. montanus) in Poland. Avian Dis. 1998; 42(1): 182–185.
  33. Hubálek Z, Wegner E, Halouzka J, et al. Serologic survey of potential vertebrate hosts for West Nile virus in Poland. Viral Immunol. 2008; 21(2): 247–253.
  34. Niczyporuk JS. E. Samorek-Salamonowicz. Study of the NRT-PCR method for the detection of the West Nile Virus. Bull Vet Inst Pulawy. 2009; 53: 187–192.
  35. Kubica-Biernat B., Kruminis-Lozowska W., Stanczak J., Cieniuch S. A study on the occurrence of West Nile virus in mosquitoes (Diptera: Culicidae) on the selected areas in Poland. Wiadomosci parazytologiczne 2009;55: 259-263.
  36. Niczyporuk JS, Samorek-Salamonowicz E, Mizak WK. The survey of wild birds for West Nile virus in Poland. Pol J Vet Sci. 2011; 14(4): 573–577.
  37. Niczyporuk JS. Niczyporuk JS, Wirus Zachodniego Nilu w Polsce - realne zagrożenie w świetle doniesień prezentowanych na konferencji "Aktualne problemy dotyczące czynników zakaźnych przenoszonych przez krew" Journal of Transfusion Medicine. 2017; 10: 54–62.
  38. Bażanów B, Jansen van Vuren P, Szymański P, et al. A Survey on West Nile and Usutu Viruses in Horses and Birds in Poland. Viruses. 2018; 10(2).
  39. Czupryna P, Niczyporuk J, Samorek-Salamonowicz E, et al. Poszukiwanie RNA wirusa zachodniego nilu w płynie mózgowordzeniowym u osób chorych na zapalenie opon mózgowordzeniowych z terenu województwa podlaskiego. Przegl Epidemiol. 2014; 68: 109.
  40. Tylewska-Wierzbanowska S. Kleszczowe zapalenie mózgu u dzieci i dorosłych. Forum Pediatrii. 2019; 5: 18–28.
  41. Stefanoff P, Rogalska J, Zajkowska J, Czerska M, Seroka W, Czarkowski MP. Surveillance of aseptic central nervous system infections in Poland: is itmeeting is it objectives? Euro Surveill 2011;16(29):pii:19924.
  42. Zajkowska J, Czupryna P. Kleszczowe zapalenie mózgu – epidemiologia, patogeneza, obraz kliniczny, diagnostyka, profilaktyka i leczenie. Forum zakażeń. 2013; 4(1): 21–27.
  43. Niczyporuk JS, Samorek-Salamonowicz E, Lecollinet S, et al. Occurrence of West Nile virus antibodies in wild birds, horses, and humans in Poland. Biomed Res Int. 2015; 2015: 234181.
  44. Pancewicz S. Moniuszko-Malinowska A., Zakażenia wybranymi wirusami z rodziny Flaviviridae, Wydanie I. Białystok: Uniwersytet Medyczny. ; 2017: 69–90.
  45. Jabłońska J, Popiel M, Bukowska-Ośko I, et al. No evidence of West Nile virus infection among Polish patients with encephalitis. Cent Eur J Immunol. 2016; 41(4): 383–385.
  46. Moniuszko-Malinowska A, Dunaj J, Czupryna P, et al. Absence of serological evidence for WNV presence in symptomatic patients in Poland. Infect Dis (Lond). 2019; 51(10): 782–784.
  47. Pealer LN, Marfin AA, Petersen LR, et al. West Nile Virus Transmission Investigation Team. Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med. 2003; 349(13): 1236–1245.
  48. Stramer SL, Dodd RY. AABB Transfusion-Transmitted Diseases Emerging Infectious Diseases Subgroup. Transfusion-transmitted emerging infectious diseases: 30 years of challenges and progress. Transfusion. 2013; 53(10 Pt 2): 2375–2383.
  49. Tobler LH, Bianco C, Glynn SA, et al. NHLBI Retrovirus Epidemiology Study (REDS). Detection of West Nile virus RNA and antibody in frozen plasma components from a voluntary market withdrawal during the 2002 peak epidemic. Transfusion. 2005; 45(4): 480–486.
  50. Macedo de Oliveira A, Beecham BD, Montgomery SP, et al. West Nile virus blood transfusion-related infection despite nucleic acid testing. Transfusion. 2004; 44(12): 1695–1699.
  51. Lai L, Lee TH, Tobler L, et al. Relative distribution of West Nile virus RNA in blood compartments: implications for blood donor nucleic acid amplification technology screening. Transfusion. 2012; 52(2): 447–454.
  52. Mohr H, Knüver-Hopf J, Gravemann U, et al. West Nile virus in plasma is highly sensitive to methylene blue-light treatment. Transfusion. 2004; 44(6): 886–890.
  53. Williamson LM, Cardigan R, Prowse CV. Methylene blue-treated fresh-frozen plasma: what is its contribution to blood safety? Transfusion. 2003; 43(9): 1322–1329.
  54. Gallian P, Vignoli C, Dombey AM, et al. Inactivation of a European strain of West Nile virus in single- donor platelet concentrate using the INTERCEPT blood system. Vox Sang. 2006; 91(4): 345–347.
  55. Lin L, Hanson CV, Alter HJ, et al. Inactivation of viruses in platelet concentrates by photochemical treatment with amotosalen and long-wavelength ultraviolet light. Transfusion. 2005; 45(4): 580–590.
  56. Ruane PH, Edrich R, Gampp D, et al. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion. 2004; 44(6): 877–885.
  57. West Nile virus infection Annual Epidemiological Report for 2018] - https://www.ecdc.europa.eu/sites/default/files/documents/west-nile-fever-annual-epidemiological-report-2018.pdf.
  58. Weekly updates: 2019 West Nile virus transmission season - https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc.
  59. West Nile Virus and Blood Safty Introduction to a Preparedness Plan in Europe. In: Prepared by: Greece I, Romania and France, ed. West Nile Virus and Blood Safty Introduction to a Preparedness Plan in Europe. Based on the EU Satellite Meeting of the Working Group on Blood Safety and WNV,Thessaloniki, 25-26 January. ; 2012: 2012.
  60. West Nile Virus and Blood Safety Introduction to a Preparedness Plan in Europe. In: West Nile Virus and Blood Safety Introduction to a Preparedness Plan in Europe. Based on the EU Satellite Meeting of the Working Group on Blood Safety and WNV T, 27 January 2011, ed. ; 2011.
  61. European Directorate for the Quality of Medicines and Health Care of the Council of Europe (EDQM), wyd. 18. ; 2020.
  62. Measures to ensure blood safety during the WNV season. w Meeting Report: Expert consultation on West Nile virus infection, Thessaloniki, 25–26 January 2011 [monograph on the internet]. European Centre for Disease Prevention and Control; 2011. http://ecdc.europa.eu/en/publications/Publications/1106_MER_WNV_Expert_Consultation.pdf.