English Polski
Tom 10, Nr 2 (2017)
Artykuł przeglądowy
Opublikowany online: 2017-07-05

dostęp otwarty

Wyświetlenia strony 400
Wyświetlenia/pobrania artykułu 1285
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Znaczenie kliniczne zakażeń wirusem Zachodniego Nilu w Europie w świetle doniesień prezentowanych na konferencji „Aktualne problemy dotyczące czynników zakaźnych przenoszonych przez krew” (10 marca 2017 r., Warszawa)

Sławomir Pancewicz1, Justyna Dunaj1, Piotr Czupryna1, Anna Moniuszko-Malinowska1
Journal of Transfusion Medicine 2017;10(2):63-66.

Streszczenie

Wirus Zachodniego Nilu (WNV) należy do wirusów RNA z rodziny Flaviviridae. Obecnie jest najszerzej rozpowszechnionym flawiwirusem na świecie. Wektorem wirusa na świecie są komary z gatunków Culex, a jego rezerwuarem — ptaki zamieszkujące tereny wilgotne. W pracy omówiono dane epidemiologiczne gorączki Zachodniego Nilu, obraz kliniczny, leczenie oraz diagnostykę. Zwrócono uwagę na znaczenie działań zapobiegawczych, szczególnie u kobiet w ciąży.

Referencje

  1. Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literature. JAMA. 2013; 310(3): 308–315.
  2. Beck C, Jimenez-Clavero MA, Leblond A, et al. Flaviviruses in Europe: complex circulation patterns and their consequences for the diagnosis and control of West Nile disease. Int J Environ Res Public Health. 2013; 10(11): 6049–6083.
  3. Juricová Z, Pinowski J, Literák I, et al. Antibodies to alphavirus, flavivirus, and bunyavirus arboviruses in house sparrows (Passer domesticus) and tree sparrows (P. montanus) in Poland. Avian Dis. 1998; 42(1): 182–185.
  4. LaDeau SL, Kilpatrick AM, Marra PP. West Nile virus emergence and large-scale declines of North American bird populations. Nature. 2007; 447(7145): 710–713.
  5. Farajollahi A, Fonseca DM, Kramer LD, et al. "Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol. 2011; 11(7): 1577–1585.
  6. Ciota AT, Kramer LD. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses. 2013; 5(12): 3021–3047.
  7. Paz S, Semenza JC. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia--a review. Int J Environ Res Public Health. 2013; 10(8): 3543–3562.
  8. Tran A, Sudre B, Paz S, et al. Environmental predictors of West Nile fever risk in Europe. Int J Health Geogr. 2014; 13: 26.
  9. Rudolf I, Bakonyi T, Sebesta O, et al. West Nile virus lineage 2 isolated from Culex modestus mosquitoes in the Czech Republic, 2013: expansion of the European WNV endemic area to the North? Euro Surveill. 2014; 19(31): 2–5.
  10. Petersen LR, Epstein JS. Problem solved? West Nile virus and transfusion safety. N Engl J Med. 2005; 353(5): 516–517.
  11. Orton SL, Stramer SL, Dodd RY. Self-reported symptoms associated with West Nile virus infection in RNA-positive blood donors. Transfusion. 2006; 46(2): 272–277.
  12. Stramer SL, Fang CT, Foster GA, et al. West Nile virus among blood donors in the United States, 2003 and 2004. N Engl J Med. 2005; 353(5): 451–459.
  13. Iwamoto M, Jernigan DB, Guasch A, et al. West Nile Virus in Transplant Recipients Investigation Team. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med. 2003; 348(22): 2196–2203.
  14. Centers for Disease Control and Prevention (CDC). West Nile virus transmission through blood transfusion--South Dakota, 2006. MMWR Morb Mortal Wkly Rep. 2007; 56(4): 76–79.
  15. Centers for Disease Control and Prevention (CDC). West Nile virus infections in organ transplant recipients--New York and Pennsylvania, August-September, 2005. MMWR Morb Mortal Wkly Rep. 2005; 54(40): 1021–1023.
  16. O'Leary DR, Marfin AA, Montgomery SP, et al. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 2004; 4(1): 61–70.
  17. Epstein PR. West Nile virus and the climate. J Urban Health. 2001; 78(2): 367–371.
  18. May FJ, Davis CT, Tesh RB, et al. Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol. 2011; 85(6): 2964–2974.
  19. Ziegler U, Skrypnyk A, Keller M, et al. West nile virus antibody prevalence in horses of Ukraine. Viruses. 2013; 5(10): 2469–2482.
  20. Hermanowska-Szpakowicz T, Grygorczuk S, Kondrusik M, et al. [Infections caused by West Nile virus]. Przegl Epidemiol. 2006; 60(1): 93–98.
  21. Kondrusik M, Ferenczi E, Zajkowska J, et al. [The evaluation of serum presence of antibodies reacting with West Nile Fever virus (WNV) antigens among inhabitants from Podlaskie and Swietokrzyskie region]. Przegl Epidemiol. 2007; 61(2): 409–416.
  22. Niczyporuk JS, Samorek-Salamonowicz E, Lecollinet S, et al. Occurrence of West Nile virus antibodies in wild birds, horses, and humans in Poland. Biomed Res Int. 2015; 2015: 234181.
  23. Czupryna P, Niczyporuk J, Samorek-Salamonowicz E, et al. Detection of West Nile Virus RNA in patients with meningitis in Podlaskie Province. Przegl Epidemiol. 2014; 68(1): 17–20, 109.
  24. Chowers MY, Lang R, Nassar F, et al. Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg Infect Dis. 2001; 7(4): 675–678.
  25. Sejvar JJ, Marfin AA. Manifestations of West Nile neuroinvasive disease. Rev Med Virol. 2006; 16(4): 209–224.
  26. Park M, Hui JS, Bartt RE. Acute anterior radiculitis associated with West Nile virus infection. J Neurol Neurosurg Psychiatry. 2003; 74(6): 823–825.
  27. Centers for Disease Control and Prevention (CDC). Interim guidelines for the evaluation of infants born to mothers infected with West Nile virus during pregnancy. MMWR Morb Mortal Wkly Rep. 2004; 53(7): 154–157.
  28. Pridjian G, Sirois PA, McRae S, et al. Prospective study of pregnancy and newborn outcomes in mothers with West nile illness during pregnancy. Birth Defects Res A Clin Mol Teratol. 2016; 106(8): 716–723.



Journal of Transfusion Medicine