English Polski
Tom 7, Nr 3 (2014)
Artykuł przeglądowy
Opublikowany online: 2014-10-23

dostęp otwarty

Wyświetlenia strony 1160
Wyświetlenia/pobrania artykułu 8733
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Udział płytek krwi w procesach zapalnych

Krystyna Maślanka
Journal of Transfusion Medicine 2014;7(3):102-109.

Streszczenie

Płytki krwi są postrzegane przede wszystkim jako komórki biorące udział w procesach hemostazy naczyniowej i utrzymaniu integralności ściany naczyniowej. Nie do końca znana jest natomiast ich rola w procesach zapalnych, które powiązane są z aktywnością wrodzonego układu odporności immunologicznej. W pracy zostaną omówione między innymi wydzielane z ziarnistości płytek krwi związki (cytokiny/chemokiny), które przy współudziale komórek śródbłonka rekrutują leukocyty do miejsca zapalenia, receptory TLR (Toll-like receptors) płytek uczestniczące w rozpoznawaniu obcego patogenu oraz zostaną opisane mechanizmy prowadzące do udziału płytek krwi w procesach zapalnych. Niniejsza praca ma na celu uproszczone przedstawienie wpływu płytek krwi na funkcjonowanie skomplikowanego systemu wrodzonej odpowiedzi immunologicznej.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Treliński J, Chojnowski K. Hemostaza i tromboza. In: Antczak A, Myśliwiec M, Pruszczyk P. ed. Wielka Interna. Medical Tribune Polska, Warszawa 2011: 68–81.
  2. Smyth SS, Whiteheart S, Italiano JE, Coller BS. Platelet morphology, biochemistry and function. . In: Kaushansky K, Beutler E, Seligsohn U, Lichtman MA, Kipps TJ, Prchal JT. ed. Williams Hematology. McGraw-Hill, New York 2010: 1735–1814.
  3. Semple JW, Italiano JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011; 11(4): 264–274.
  4. Projahn D, Koenen RR. Platelets: key players in vascular inflammation. J Leuk Biol. 2012; 92: 1–9.
  5. Semple JW. Platelet have a role as immune cells. ISBT Science Series. 2012; 7: 269–273.
  6. Li C, Li J, Li Y, et al. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Advances in Hematology. 2012; 2012: 1–14.
  7. Morrell CN, Aggrey AA, Chapman LM, et al. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014; 123(18): 2759–2767.
  8. Jakóbisiak M. Główne komponenty i zasadnicze cechy odpowiedzi immunologicznej. In: Jakóbisiak M, Gołąb J, Lasek W, Stokłosa T. ed. Immunologia . Wydawnictwo Naukowe PWN , Warszawa 2013: 1–5.
  9. Michelson AD. Inflammation. In: Michelson AD. ed. Platelets. Elsevier, London 2002: 713–724.
  10. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science. 1996; 272(5258): 50–53.
  11. Janeway C, Medzhitov R. Innate immune recognition. Annual Review of Immunology. 2002; 20(1): 197–216.
  12. Nathan C. Points of control in inflammation. Nature. 2002; 420(6917): 846–852.
  13. Warren JS, Ward PA. The inflammatory response. In: Kaushansky K, Beutler E, Seligsohn U, Lichtman MA, Kipps TJ, Prchal JT. ed. Williams Hematology. McGraw-Hill, New York 2010: 251–260.
  14. Gołąb J, Jakóbisiak M, Firczuk M. Cytokiny. In: Gołąb J, Jakóbisiak M, Lasek W, Stokłosa T. ed. Immunologia. Nowe wydanie. Wydawnictwo Naukowe PWN, Warszawa 2013: 157–197.
  15. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000; 18: 217–242.
  16. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000; 12(2): 121–128.
  17. Flad HD, Brandt E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci. 2010; 67(14): 2363–2386.
  18. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007; 100(1): 27–40.
  19. Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998; 16: 111–135.
  20. Henn V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998; 391(6667): 591–594.
  21. Henn V, Steinbach S, Büchner K, et al. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood. 2001; 98(4): 1047–1054.
  22. Elzey BD, Tian J, Jensen RJ, et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity. 2003; 19(1): 9–19.
  23. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 1998; 93(7): 1159–1170.
  24. Krijgsveld J, Zaat SA, Meeldijk J, et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem. 2000; 275(20): 374–381.
  25. Yeaman MR, Puentes SM, Norman DC, et al. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992; 60(3): 1202–1209.
  26. McMorran BJ, Marshall VM, de Graaf C, et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science. 2009; 323(5915): 797–800.
  27. Cox D, McConkey S. The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci. 2010; 67(4): 557–568.
  28. Shiraki R, Inoue N, Kawasaki S, et al. Expression of Toll-like receptors on human platelets. Thromb Res. 2004; 113(6): 379–385.
  29. Cognasse F, Hamzeh H, Chavarin P, et al. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005; 83(2): 196–198.
  30. Aslam R, Freedman J, Semple JW. Murine platelets express Toll-like receptor 2: a potential regulator of innate and adoptive immunity. Platelets. 2004; 15: 267–269.
  31. Andronegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4. Blood. 2005; 106: 2317–2423.
  32. Semple JW, Aslam R, Kim M, et al. Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets. Blood. 2007; 109(11): 4803–4805.
  33. Aslam R, Speck ER, Kim M, et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood. 2006; 107(2): 637–641.
  34. Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009; 182(12): 7997–8004.
  35. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007; 13(4): 463–469.
  36. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006; 20(1): 1–26.
  37. Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007; 21(3): 157–171.
  38. Maślanka K. Physiopathological activity of cell membrane microparticles. J Transf Med. 2010; 1: 9–17.
  39. Barry OP, Praticò D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102(1): 136–144.
  40. Merten M, Pakala R, Thiagarajan P, et al. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation. 1999; 99(19): 2577–2582.
  41. Baj-Krzyworzeka M, Majka M, Pratico D, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002; 30(5): 450–459.
  42. Semple JW, Provan D, Garvey MB, et al. Recent progress in understanding the pathogenesis of immune thrombocytopenia. Curr Opin Hematol. 2010; 17(6): 590–595.
  43. Nagahama M, Nomura S, Ozaki Y, et al. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity. 2001; 33(2): 85–94.
  44. Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010; 327(5965): 580–583.
  45. Nomura S, Suzuki M, Katsura K, et al. Platelet-derived microparticles may influence the development of atherosclerosis in diabetes mellitus. Atherosclerosis. 1995; 116(2): 235–240.
  46. Huisse MG, Ajzenberg N, Feldman L, et al. Microparticle-linked tissue factor activity and increased thrombin activity play a potential role in fibrinolysis failure in ST-segment elevation myocardial infarction. Thromb Haemost. 2009; 101(4): 734–740.
  47. Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003; 145(6): 962–970.
  48. Lee YJ, Jy W, Horstman LL, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993; 72(4): 295–304.
  49. Mause SF, von Hundelshausen P, Zernecke A, et al. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol. 2005; 25(7): 1512–1518.
  50. Barry OP, Praticò D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102(1): 136–144.
  51. Diacovo TG, Roth SJ, Buccola JM, et al. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11/CD18. Blood. 1996; 88: 146–157.
  52. Procesy migracji komórek krwiotwórczych i leukocytów. J Transf Med. 2014; 7: 40–50.
  53. Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med. 1998; 187(3): 329–339.
  54. Li JM, Podolsky RS, Rohrer MJ, et al. Adhesion of activated platelets to venous endothelial cells is mediated via GPIIb/IIIa. J Surg Res. 1996; 61(2): 543–548.
  55. Miller DL, Yaron R, Yellin MJ. CD40L-CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. J Leukoc Biol. 1998; 63(3): 373–379.
  56. Slupsky JR, Kalbas M, Willuweit A, et al. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost. 1998; 80(6): 1008–1014.
  57. Gawaz M, Neumann FJ, Dickfeld T, et al. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation. 1998; 98(12): 1164–1171.
  58. Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol. 2001; 154(3): 485–490.
  59. Frenette PS, Denis CV, Weiss L, et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med. 2000; 191(8): 1413–1422.
  60. Romo GM, Dong JF, Schade AJ, et al. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med. 1999; 190(6): 803–814.
  61. Huo Y, Schober A, Forlow SB, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med. 2003; 9(1): 61–67.
  62. Larsen E, Celi A, Gilbert GE, et al. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989; 59(2): 305–312.
  63. Buttrum SM, Hatton R, Nash GB. Selectin-mediated rolling of neutrophils on immobilized platelets. Blood. 1993; 82(4): 1165–1174.
  64. Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol. 2012; 590(5): 1023–1034.