English Polski
Vol 7, No 3 (2014)
Review paper
Published online: 2014-10-23

open access

Page views 1114
Article views/downloads 8495
Get Citation

Connect on Social Media

Connect on Social Media

The role of platelets in inflammatory processes

Krystyna Maślanka
Journal of Transfusion Medicine 2014;7(3):102-109.


Platelets are mostly perceived as cells that play an eminent role in hemostasis and safeguard of vascular integrity. However, not yet fully recognized is the part they play in triggering of inflammatory processes related to the innate immune system. The paper discusses — among others — compounds (cytokines/chemokines) released from platelet granules which can mediate the interaction with leukocytes (via endothelial cells) and enhance their recruitment to the inflammation site and also Toll-like receptors which play a critical role in the early innate immune response to invading pathogens. The paper also describes mechanisms through which platelets can contribute to inflammation processes. The aim of this paper is a simplified presentation of the effect of platelets on the complex system of innate immune response.

Article available in PDF format

View PDF (Polish) Download PDF file


  1. Treliński J, Chojnowski K. Hemostaza i tromboza. In: Antczak A, Myśliwiec M, Pruszczyk P. ed. Wielka Interna. Medical Tribune Polska, Warszawa 2011: 68–81.
  2. Smyth SS, Whiteheart S, Italiano JE, Coller BS. Platelet morphology, biochemistry and function. . In: Kaushansky K, Beutler E, Seligsohn U, Lichtman MA, Kipps TJ, Prchal JT. ed. Williams Hematology. McGraw-Hill, New York 2010: 1735–1814.
  3. Semple JW, Italiano JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011; 11(4): 264–274.
  4. Projahn D, Koenen RR. Platelets: key players in vascular inflammation. J Leuk Biol. 2012; 92: 1–9.
  5. Semple JW. Platelet have a role as immune cells. ISBT Science Series. 2012; 7: 269–273.
  6. Li C, Li J, Li Y, et al. Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Advances in Hematology. 2012; 2012: 1–14.
  7. Morrell CN, Aggrey AA, Chapman LM, et al. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014; 123(18): 2759–2767.
  8. Jakóbisiak M. Główne komponenty i zasadnicze cechy odpowiedzi immunologicznej. In: Jakóbisiak M, Gołąb J, Lasek W, Stokłosa T. ed. Immunologia . Wydawnictwo Naukowe PWN , Warszawa 2013: 1–5.
  9. Michelson AD. Inflammation. In: Michelson AD. ed. Platelets. Elsevier, London 2002: 713–724.
  10. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science. 1996; 272(5258): 50–53.
  11. Janeway C, Medzhitov R. Innate immune recognition. Annual Review of Immunology. 2002; 20(1): 197–216.
  12. Nathan C. Points of control in inflammation. Nature. 2002; 420(6917): 846–852.
  13. Warren JS, Ward PA. The inflammatory response. In: Kaushansky K, Beutler E, Seligsohn U, Lichtman MA, Kipps TJ, Prchal JT. ed. Williams Hematology. McGraw-Hill, New York 2010: 251–260.
  14. Gołąb J, Jakóbisiak M, Firczuk M. Cytokiny. In: Gołąb J, Jakóbisiak M, Lasek W, Stokłosa T. ed. Immunologia. Nowe wydanie. Wydawnictwo Naukowe PWN, Warszawa 2013: 157–197.
  15. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000; 18: 217–242.
  16. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000; 12(2): 121–128.
  17. Flad HD, Brandt E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci. 2010; 67(14): 2363–2386.
  18. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007; 100(1): 27–40.
  19. Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998; 16: 111–135.
  20. Henn V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998; 391(6667): 591–594.
  21. Henn V, Steinbach S, Büchner K, et al. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood. 2001; 98(4): 1047–1054.
  22. Elzey BD, Tian J, Jensen RJ, et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity. 2003; 19(1): 9–19.
  23. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 1998; 93(7): 1159–1170.
  24. Krijgsveld J, Zaat SA, Meeldijk J, et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem. 2000; 275(20): 374–381.
  25. Yeaman MR, Puentes SM, Norman DC, et al. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992; 60(3): 1202–1209.
  26. McMorran BJ, Marshall VM, de Graaf C, et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science. 2009; 323(5915): 797–800.
  27. Cox D, McConkey S. The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci. 2010; 67(4): 557–568.
  28. Shiraki R, Inoue N, Kawasaki S, et al. Expression of Toll-like receptors on human platelets. Thromb Res. 2004; 113(6): 379–385.
  29. Cognasse F, Hamzeh H, Chavarin P, et al. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol. 2005; 83(2): 196–198.
  30. Aslam R, Freedman J, Semple JW. Murine platelets express Toll-like receptor 2: a potential regulator of innate and adoptive immunity. Platelets. 2004; 15: 267–269.
  31. Andronegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4. Blood. 2005; 106: 2317–2423.
  32. Semple JW, Aslam R, Kim M, et al. Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets. Blood. 2007; 109(11): 4803–4805.
  33. Aslam R, Speck ER, Kim M, et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood. 2006; 107(2): 637–641.
  34. Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009; 182(12): 7997–8004.
  35. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007; 13(4): 463–469.
  36. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006; 20(1): 1–26.
  37. Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007; 21(3): 157–171.
  38. Maślanka K. Physiopathological activity of cell membrane microparticles. J Transf Med. 2010; 1: 9–17.
  39. Barry OP, Praticò D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102(1): 136–144.
  40. Merten M, Pakala R, Thiagarajan P, et al. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation. 1999; 99(19): 2577–2582.
  41. Baj-Krzyworzeka M, Majka M, Pratico D, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002; 30(5): 450–459.
  42. Semple JW, Provan D, Garvey MB, et al. Recent progress in understanding the pathogenesis of immune thrombocytopenia. Curr Opin Hematol. 2010; 17(6): 590–595.
  43. Nagahama M, Nomura S, Ozaki Y, et al. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity. 2001; 33(2): 85–94.
  44. Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010; 327(5965): 580–583.
  45. Nomura S, Suzuki M, Katsura K, et al. Platelet-derived microparticles may influence the development of atherosclerosis in diabetes mellitus. Atherosclerosis. 1995; 116(2): 235–240.
  46. Huisse MG, Ajzenberg N, Feldman L, et al. Microparticle-linked tissue factor activity and increased thrombin activity play a potential role in fibrinolysis failure in ST-segment elevation myocardial infarction. Thromb Haemost. 2009; 101(4): 734–740.
  47. Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003; 145(6): 962–970.
  48. Lee YJ, Jy W, Horstman LL, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993; 72(4): 295–304.
  49. Mause SF, von Hundelshausen P, Zernecke A, et al. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol. 2005; 25(7): 1512–1518.
  50. Barry OP, Praticò D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102(1): 136–144.
  51. Diacovo TG, Roth SJ, Buccola JM, et al. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11/CD18. Blood. 1996; 88: 146–157.
  52. Procesy migracji komórek krwiotwórczych i leukocytów. J Transf Med. 2014; 7: 40–50.
  53. Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med. 1998; 187(3): 329–339.
  54. Li JM, Podolsky RS, Rohrer MJ, et al. Adhesion of activated platelets to venous endothelial cells is mediated via GPIIb/IIIa. J Surg Res. 1996; 61(2): 543–548.
  55. Miller DL, Yaron R, Yellin MJ. CD40L-CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. J Leukoc Biol. 1998; 63(3): 373–379.
  56. Slupsky JR, Kalbas M, Willuweit A, et al. Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost. 1998; 80(6): 1008–1014.
  57. Gawaz M, Neumann FJ, Dickfeld T, et al. Activated platelets induce monocyte chemotactic protein-1 secretion and surface expression of intercellular adhesion molecule-1 on endothelial cells. Circulation. 1998; 98(12): 1164–1171.
  58. Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol. 2001; 154(3): 485–490.
  59. Frenette PS, Denis CV, Weiss L, et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med. 2000; 191(8): 1413–1422.
  60. Romo GM, Dong JF, Schade AJ, et al. The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med. 1999; 190(6): 803–814.
  61. Huo Y, Schober A, Forlow SB, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med. 2003; 9(1): 61–67.
  62. Larsen E, Celi A, Gilbert GE, et al. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989; 59(2): 305–312.
  63. Buttrum SM, Hatton R, Nash GB. Selectin-mediated rolling of neutrophils on immobilized platelets. Blood. 1993; 82(4): 1165–1174.
  64. Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol. 2012; 590(5): 1023–1034.