English Polski
Tom 3, Nr 1 (2010)
Artykuł przeglądowy
Opublikowany online: 2010-03-19

dostęp otwarty

Wyświetlenia strony 604
Wyświetlenia/pobrania artykułu 3519
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Fizjologiczna i patogenna aktywność mikrocząstek błon komórkowych

Krystyna Maślanka
DOI: 10.5603/jtm.v3i1.28432
Journal of Transfusion Medicine 2010;3(1):9-18.

Streszczenie

Mikrocząstki (MP) są uwalniane z błon powierzchniowych większości komórek eukariotycznych. W pracy przedstawiono, na podstawie doniesień literatury światowej, różne rodzaje aktywności MP: prokoagulacyjną i antykoagulacyjną, efekt immunomodulacyjny, zdolność do adhezji i indukowania procesów zapalnych, udział w apoptozie, angiogenezie i przyjęciu przeszczepów komórek hematopoetycznych. Ponadto opisano wpływ MP na powstawanie wrodzonych zaburzeń czynności płytek krwi, hemoglobinopatii S, małopłytkowości indukowanej heparyną, posocznicy, zakrzepowej plamicy małopłytkowej, nocnej napadowej hemoglobinurii, cukrzycy, patologii w chorobach sercowo-naczyniowych, w zakrzepicy żył głębokich oraz zatorach pęcherzyków płucnych. Zwrócono także uwagę na znaczenie MP w składnikach krwi przygotowywanych do transfuzji.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Gelderman MP, Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol Biol. 2008; 484: 79–93.
  2. Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007; 21(3): 157–171.
  3. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006; 20(1): 1–26.
  4. Maślanka K, Michur H, Smoleńska-Sym G. Mikrocząstki błon komórkowych. Acta Haemat. Pol. 2009; 40: 481–491.
  5. Berckmans RJ, Nieuwland R, Böing AN, et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001; 85(4): 639–646.
  6. Hamilton KK, Hattori R, Esmon CT, et al. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem. 1990; 265(7): 3809–3814.
  7. Łopaciuk S. Fizjologia hemostazy. In: Dmoszyńska A, Robak T. ed. Podstawy hematologii. Wydawnictwo CZELEJ, Lublin 2003: 95–113.
  8. Jy W, Jimenez JJ, Mauro LM, et al. Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation. J Thromb Haemost. 2005; 3(6): 1301–1308.
  9. Tans G, Rosing J, Thomassen MC, et al. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood. 1991; 77(12): 2641–2648.
  10. Merten M, Pakala R, Thiagarajan P, et al. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation. 1999; 99(19): 2577–2582.
  11. Barry OP, Pratico D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102: 2118–2127.
  12. Sabatier F, Roux V, Anfosso F, et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood. 2002; 99(11): 3962–3970.
  13. Mesri M, Altieri DC. Leukocyte Microparticles Stimulate Endothelial Cell Cytokine Release and Tissue Factor Induction in a JNK1 Signaling Pathway. Journal of Biological Chemistry. 1999; 274(33): 23111–23118.
  14. Gasser O, Schifferli JA. Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Exp Cell Res. 2005; 307(2): 381–387.
  15. Wiedmer T, Hall SE, Ortel TL, et al. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood. 1993; 82(4): 1192–1196.
  16. Simak J, Novak J. Ceramide mediated release of membrane microparticles from endothelial cells is controlled by caspase 1 activity and in contrast to executive apoptotic blebbing is kinase independent. Blood . 2003; 102: 805a.
  17. Mezentsev A, Merks RMH, O'Riordan E, et al. Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am J Physiol Heart Circ Physiol. 2005; 289(3): H1106–H1114.
  18. Kim HK, Song KS, Chung JH, et al. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004; 124(3): 376–384.
  19. Brill A, Dashevsky O, Rivo J, et al. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005; 67(1): 30–38.
  20. Janowska-Wieczorek A, Majka M, Kijowski J, et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood. 2001; 98(10): 3143–3149.
  21. Pihusch R, Wegner H, Salat C, et al. Flow cytometric findings in platelets of patients following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002; 30(6): 381–387.
  22. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005; 113(5): 752–760.
  23. Mack M, Kleinschmidt A, Brühl H, et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med. 2000; 6(7): 769–775.
  24. Fritzsching B, Schwer B, Kartenbeck J, et al. Release and intercellular transfer of cell surface CD81 via microparticles. J Immunol. 2002; 169(10): 5531–5537.
  25. Combes V, Coltel N, Alibert M, et al. ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol. 2005; 166(1): 295–302.
  26. Taylor DD, Gerçel-Taylor C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 2005; 92(2): 305–311.
  27. Hunter N, Foster J, Chong A, et al. Transmission of prion diseases by blood transfusion. J Gen Virol. 2002; 83(Pt 11): 2897–2905.
  28. Sims PJ, Wiedmer T, Esmon CT, et al. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem. 1989; 264(29): 17049–17057.
  29. Castaman G, Yu-Feng L, Battistin E, et al. Characterization of a novel bleeding disorder with isolated prolonged bleeding time and deficiency of platelet microvesicle generation. Br J Haematol. 1997; 96(3): 458–463.
  30. Shcherbina A, Rosen FS, Remold-O'Donnell E. Pathological events in platelets of Wiskott-Aldrich syndrome patients. Br J Haematol. 1999; 106(4): 875–883.
  31. Wojcierowski JK. Aspekty genetyczne hematologii. In: Dmoszyńska A, Robak T. ed. Podstawy hematologii. CZELEJ , Lublin 2003: 23–53.
  32. Shet AS, Aras O, Gupta K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 2003; 102(7): 2678–2683.
  33. Warkentin TE. Heparin-induced thrombocytopenia: IgG-mediated platelet activation, platelet microparticle generation, and altered procoagulant/anticoagulant balance in the pathogenesis of thrombosis and venous limb gangrene complicating heparin-induced thrombocytopenia. Transfus Med Rev. 1996; 10(4): 249–258.
  34. Satta N, Toti F, Feugeas O, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol. 1994; 153(7): 3245–3255.
  35. Nieuwland R, Berckmans RJ, McGregor S, et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood. 2000; 95(3): 930–935.
  36. Barry OP, Praticò D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102(1): 136–144.
  37. Zawilska K. Płytkowe skazy krwotoczne. In: Dmoszyńska A, Robak T. ed. Podstawy hematologii. . Wydawnictwo CZELEJ , Lublin 2003: 399–424.
  38. Kelton JG, Warkentin TE, Hayward CP, et al. Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles. Blood. 1992; 80(9): 2246–2251.
  39. y W, Mauro LM, et al. Elevated endothelial micoparticles In thrombotic thrombocytopenic purpura. Finding from brain and renal microvascular cell culture and patiens with active disease. Br J Haematol. 2001; 112: 81–90.
  40. Galli M, Grassi A, Barbui T. Platelet-derived microvesicles in thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Thromb Haemost. 1996; 75(3): 427–431.
  41. Jy W, Horstman LL, Jimenez JJ, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost. 2004; 2(10): 1842–1851.
  42. Żupańska B, Konopka L, Robak T, et al. Nocna napadowa hemoglobinuria — analiza 27 chorych. Acta Hematol Pol. 2002; 33: 361–369.
  43. Simak J, Holada K, Risitano AM, et al. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2004; 125(6): 804–813.
  44. Hugel B, Socié G, Vu T, et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood. 1999; 93(10): 3451–3456.
  45. Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes. 2002; 51(9): 2840–2845.
  46. Omoto S, Nomura S, Shouzu A, et al. Detection of monocyte-derived microparticles in patients with Type II diabetes mellitus. Diabetologia. 2002; 45(4): 550–555.
  47. Morel O, Hugel B, Jesel L, et al. Sustained elevated amounts of circulating procoagulant membrane microparticles and soluble GPV after acute myocardial infarction in diabetes mellitus. Thromb Haemost. 2004; 91(2): 345–353.
  48. Lynch SF, Ludlam CA. Plasma microparticles and vascular disorders. Br J Haematol. 2007; 137(1): 36–48.
  49. Simak J, Gelderman MP, Yu H, et al. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost. 2006; 4(6): 1296–1302.
  50. Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003; 145(6): 962–970.
  51. Werner N, Wassmann S, Ahlers P, et al. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2006; 26(1): 112–116.
  52. Tan KT, Tayebjee MH, Macfadyen RJ, et al. Elevated platelet microparticles in stable coronary artery disease are unrelated to disease severity or to indices of inflammation. Platelets. 2005; 16(6): 368–371.
  53. Lee YJ, Jy W, Horstman LL, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993; 72(4): 295–304.
  54. Touat Z, Ollivier V, Dai J, et al. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am J Pathol. 2006; 168(3): 1022–1030.
  55. van der Zee PM, Biró E, Ko Y, et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem. 2006; 52(4): 657–664.
  56. Tan KT, Tayebjee MH, Lynd C, et al. Platelet microparticles and soluble P selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers. Ann Med. 2005; 37(1): 61–66.
  57. Heresi GA, Chirinos JA, Velasquez H, et al. Elevated endothelial microparticles (EMP) and activation markers of platelet and leukocytes in venous thromboembolism (VTE). Blood. 2003; 102: 804a.
  58. Wakefield TW, Henke PK. The role of inflammation in early and late venous thrombosis: Are there clinical implications? Semin Vasc Surg. 2005; 18(3): 118–129.
  59. George JN, Pickett EB, Heinz R. Platelet membrane microparticles in blood bank fresh frozen plasma and cryoprecipitate. Blood. 1986; 68(1): 307–309.
  60. Lawrie AS, Albanyan A, Cardigan RA, et al. The characterization and impact of microparticles on haemostasis within fresh-frozen plasma. Vox Sang. 2008; 95(3): 197–204.
  61. Solberg C, Osterud B, Little C. Platelet storage lesion: formation of platelet fragments with platelet factor 3 activity. Thromb Res. 1987; 48(5): 559–565.
  62. Divers SG, Kannan K, Stewart RM, et al. Quantitation of CD62, soluble CD62, and lysosome-associated membrane proteins 1 and 2 for evaluation of the quality of stored platelet concentrates. Transfusion. 1995; 35(4): 292–297.
  63. Wang C, Mody M, Herst R, et al. Flow cytometric analysis of platelet function in stored platelet concentrates. Transfus Sci. 1999; 20(2): 129–139.
  64. Devine DV, Bradley AJ, Maurer E, et al. Effects of prestorage white cell reduction on platelet aggregate formation and the activation state of platelets and plasma enzyme systems. Transfusion. 1999; 39(7): 724–734.
  65. Crettaz D, Canellini G, Tissot JD, et al. Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang. 2008; 95: 288–297.
  66. Gemmell CH. Flow cytometric evaluation of material-induced platelet and complement activation. J Biomater Sci Polym Ed. 2000; 11(11): 1197–1210.
  67. Bode AP, Orton SM, Frye MJ, et al. Vesiculation of platelets during in vitro aging. Blood. 1991; 77(4): 887–895.
  68. Bode AP, Knupp CL. Effect of cold storage on platelet glycoprotein Ib and vesiculation. Transfusion. 1994; 34(8): 690–696.
  69. Gelderman MP, Carter LB, Simak J. High counts of potentially pathogenic cell membrane microparticles in apheresis platelets. Blood. 2004; 104: 988a.
  70. Blajchman MA. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J Thromb Haemost. 2003; 1(7): 1637–1641.
  71. McCullough J, Vesole DH, Benjamin RJ, et al. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: the SPRINT Trial. Blood. 2004; 104(5): 1534–1541.