open access

Vol 3, No 1 (2010)
REVIEWS
Published online: 2010-03-19
Get Citation

Physiopathological activity of cell membrane microparticles

Krystyna Maślanka
Journal of Transfusion Medicine 2010;3(1):9-18.

open access

Vol 3, No 1 (2010)
REVIEWS
Published online: 2010-03-19

Abstract

Microparticles (MP) are released from cell membrane of most eukaryotic cells. Supported by data from world literature, this paper presents different kinds of MP activity: procoagulant and anticoagulant activity, immunomodulatory effect, capacity for adhesion and induction of inflammatory processes, participation in apoptosis, angiogenesis and engraftment of hematopoietic stem cell transplantation. Apart from the above, the presentation also describes MP contribution to pathogenesis: congenital bleeding disorders, haemoglobinopathy S, heparin-induced thrombocytopenia, thrombocytopenic purpura, diabetes, paroxysmal noctural haemoglobinuria, cardiovascular diseases, deep venous thrombosis and pulmonary embolism. The significance of MP in blood components for transfusion is also stressed.

Abstract

Microparticles (MP) are released from cell membrane of most eukaryotic cells. Supported by data from world literature, this paper presents different kinds of MP activity: procoagulant and anticoagulant activity, immunomodulatory effect, capacity for adhesion and induction of inflammatory processes, participation in apoptosis, angiogenesis and engraftment of hematopoietic stem cell transplantation. Apart from the above, the presentation also describes MP contribution to pathogenesis: congenital bleeding disorders, haemoglobinopathy S, heparin-induced thrombocytopenia, thrombocytopenic purpura, diabetes, paroxysmal noctural haemoglobinuria, cardiovascular diseases, deep venous thrombosis and pulmonary embolism. The significance of MP in blood components for transfusion is also stressed.
Get Citation

Keywords

physiopathology of microparticles; activity of microparticles; clinical implication of microparticles

About this article
Title

Physiopathological activity of cell membrane microparticles

Journal

Journal of Transfusion Medicine

Issue

Vol 3, No 1 (2010)

Pages

9-18

Published online

2010-03-19

Bibliographic record

Journal of Transfusion Medicine 2010;3(1):9-18.

Keywords

physiopathology of microparticles
activity of microparticles
clinical implication of microparticles

Authors

Krystyna Maślanka

References (71)
  1. Gelderman MP, Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol Biol. 2008; 484: 79–93.
  2. Piccin A, Murphy WG, Smith OP. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007; 21(3): 157–171.
  3. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006; 20(1): 1–26.
  4. Maślanka K, Michur H, Smoleńska-Sym G. Mikrocząstki błon komórkowych. Acta Haemat. Pol. 2009; 40: 481–491.
  5. Berckmans RJ, Nieuwland R, Böing AN, et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001; 85(4): 639–646.
  6. Hamilton KK, Hattori R, Esmon CT, et al. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem. 1990; 265(7): 3809–3814.
  7. Łopaciuk S. Fizjologia hemostazy. In: Dmoszyńska A, Robak T. ed. Podstawy hematologii. Wydawnictwo CZELEJ, Lublin 2003: 95–113.
  8. Jy W, Jimenez JJ, Mauro LM, et al. Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation. J Thromb Haemost. 2005; 3(6): 1301–1308.
  9. Tans G, Rosing J, Thomassen MC, et al. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles. Blood. 1991; 77(12): 2641–2648.
  10. Merten M, Pakala R, Thiagarajan P, et al. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation. 1999; 99(19): 2577–2582.
  11. Barry OP, Pratico D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102: 2118–2127.
  12. Sabatier F, Roux V, Anfosso F, et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood. 2002; 99(11): 3962–3970.
  13. Mesri M, Altieri DC. Leukocyte Microparticles Stimulate Endothelial Cell Cytokine Release and Tissue Factor Induction in a JNK1 Signaling Pathway. Journal of Biological Chemistry. 1999; 274(33): 23111–23118.
  14. Gasser O, Schifferli JA. Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Exp Cell Res. 2005; 307(2): 381–387.
  15. Wiedmer T, Hall SE, Ortel TL, et al. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood. 1993; 82(4): 1192–1196.
  16. Simak J, Novak J. Ceramide mediated release of membrane microparticles from endothelial cells is controlled by caspase 1 activity and in contrast to executive apoptotic blebbing is kinase independent. Blood . 2003; 102: 805a.
  17. Mezentsev A, Merks RMH, O'Riordan E, et al. Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am J Physiol Heart Circ Physiol. 2005; 289(3): H1106–H1114.
  18. Kim HK, Song KS, Chung JH, et al. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004; 124(3): 376–384.
  19. Brill A, Dashevsky O, Rivo J, et al. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005; 67(1): 30–38.
  20. Janowska-Wieczorek A, Majka M, Kijowski J, et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood. 2001; 98(10): 3143–3149.
  21. Pihusch R, Wegner H, Salat C, et al. Flow cytometric findings in platelets of patients following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002; 30(6): 381–387.
  22. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005; 113(5): 752–760.
  23. Mack M, Kleinschmidt A, Brühl H, et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med. 2000; 6(7): 769–775.
  24. Fritzsching B, Schwer B, Kartenbeck J, et al. Release and intercellular transfer of cell surface CD81 via microparticles. J Immunol. 2002; 169(10): 5531–5537.
  25. Combes V, Coltel N, Alibert M, et al. ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol. 2005; 166(1): 295–302.
  26. Taylor DD, Gerçel-Taylor C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 2005; 92(2): 305–311.
  27. Hunter N, Foster J, Chong A, et al. Transmission of prion diseases by blood transfusion. J Gen Virol. 2002; 83(Pt 11): 2897–2905.
  28. Sims PJ, Wiedmer T, Esmon CT, et al. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J Biol Chem. 1989; 264(29): 17049–17057.
  29. Castaman G, Yu-Feng L, Battistin E, et al. Characterization of a novel bleeding disorder with isolated prolonged bleeding time and deficiency of platelet microvesicle generation. Br J Haematol. 1997; 96(3): 458–463.
  30. Shcherbina A, Rosen FS, Remold-O'Donnell E. Pathological events in platelets of Wiskott-Aldrich syndrome patients. Br J Haematol. 1999; 106(4): 875–883.
  31. Wojcierowski JK. Aspekty genetyczne hematologii. In: Dmoszyńska A, Robak T. ed. Podstawy hematologii. CZELEJ , Lublin 2003: 23–53.
  32. Shet AS, Aras O, Gupta K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 2003; 102(7): 2678–2683.
  33. Warkentin TE. Heparin-induced thrombocytopenia: IgG-mediated platelet activation, platelet microparticle generation, and altered procoagulant/anticoagulant balance in the pathogenesis of thrombosis and venous limb gangrene complicating heparin-induced thrombocytopenia. Transfus Med Rev. 1996; 10(4): 249–258.
  34. Satta N, Toti F, Feugeas O, et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol. 1994; 153(7): 3245–3255.
  35. Nieuwland R, Berckmans RJ, McGregor S, et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood. 2000; 95(3): 930–935.
  36. Barry OP, Praticò D, Savani RC, et al. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998; 102(1): 136–144.
  37. Zawilska K. Płytkowe skazy krwotoczne. In: Dmoszyńska A, Robak T. ed. Podstawy hematologii. . Wydawnictwo CZELEJ , Lublin 2003: 399–424.
  38. Kelton JG, Warkentin TE, Hayward CP, et al. Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles. Blood. 1992; 80(9): 2246–2251.
  39. y W, Mauro LM, et al. Elevated endothelial micoparticles In thrombotic thrombocytopenic purpura. Finding from brain and renal microvascular cell culture and patiens with active disease. Br J Haematol. 2001; 112: 81–90.
  40. Galli M, Grassi A, Barbui T. Platelet-derived microvesicles in thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Thromb Haemost. 1996; 75(3): 427–431.
  41. Jy W, Horstman LL, Jimenez JJ, et al. Measuring circulating cell-derived microparticles. J Thromb Haemost. 2004; 2(10): 1842–1851.
  42. Żupańska B, Konopka L, Robak T, et al. Nocna napadowa hemoglobinuria — analiza 27 chorych. Acta Hematol Pol. 2002; 33: 361–369.
  43. Simak J, Holada K, Risitano AM, et al. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2004; 125(6): 804–813.
  44. Hugel B, Socié G, Vu T, et al. Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia. Blood. 1999; 93(10): 3451–3456.
  45. Sabatier F, Darmon P, Hugel B, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes. 2002; 51(9): 2840–2845.
  46. Omoto S, Nomura S, Shouzu A, et al. Detection of monocyte-derived microparticles in patients with Type II diabetes mellitus. Diabetologia. 2002; 45(4): 550–555.
  47. Morel O, Hugel B, Jesel L, et al. Sustained elevated amounts of circulating procoagulant membrane microparticles and soluble GPV after acute myocardial infarction in diabetes mellitus. Thromb Haemost. 2004; 91(2): 345–353.
  48. Lynch SF, Ludlam CA. Plasma microparticles and vascular disorders. Br J Haematol. 2007; 137(1): 36–48.
  49. Simak J, Gelderman MP, Yu H, et al. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost. 2006; 4(6): 1296–1302.
  50. Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J. 2003; 145(6): 962–970.
  51. Werner N, Wassmann S, Ahlers P, et al. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2006; 26(1): 112–116.
  52. Tan KT, Tayebjee MH, Macfadyen RJ, et al. Elevated platelet microparticles in stable coronary artery disease are unrelated to disease severity or to indices of inflammation. Platelets. 2005; 16(6): 368–371.
  53. Lee YJ, Jy W, Horstman LL, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993; 72(4): 295–304.
  54. Touat Z, Ollivier V, Dai J, et al. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am J Pathol. 2006; 168(3): 1022–1030.
  55. van der Zee PM, Biró E, Ko Y, et al. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem. 2006; 52(4): 657–664.
  56. Tan KT, Tayebjee MH, Lynd C, et al. Platelet microparticles and soluble P selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers. Ann Med. 2005; 37(1): 61–66.
  57. Heresi GA, Chirinos JA, Velasquez H, et al. Elevated endothelial microparticles (EMP) and activation markers of platelet and leukocytes in venous thromboembolism (VTE). Blood. 2003; 102: 804a.
  58. Wakefield TW, Henke PK. The role of inflammation in early and late venous thrombosis: Are there clinical implications? Semin Vasc Surg. 2005; 18(3): 118–129.
  59. George JN, Pickett EB, Heinz R. Platelet membrane microparticles in blood bank fresh frozen plasma and cryoprecipitate. Blood. 1986; 68(1): 307–309.
  60. Lawrie AS, Albanyan A, Cardigan RA, et al. The characterization and impact of microparticles on haemostasis within fresh-frozen plasma. Vox Sang. 2008; 95(3): 197–204.
  61. Solberg C, Osterud B, Little C. Platelet storage lesion: formation of platelet fragments with platelet factor 3 activity. Thromb Res. 1987; 48(5): 559–565.
  62. Divers SG, Kannan K, Stewart RM, et al. Quantitation of CD62, soluble CD62, and lysosome-associated membrane proteins 1 and 2 for evaluation of the quality of stored platelet concentrates. Transfusion. 1995; 35(4): 292–297.
  63. Wang C, Mody M, Herst R, et al. Flow cytometric analysis of platelet function in stored platelet concentrates. Transfus Sci. 1999; 20(2): 129–139.
  64. Devine DV, Bradley AJ, Maurer E, et al. Effects of prestorage white cell reduction on platelet aggregate formation and the activation state of platelets and plasma enzyme systems. Transfusion. 1999; 39(7): 724–734.
  65. Crettaz D, Canellini G, Tissot JD, et al. Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang. 2008; 95: 288–297.
  66. Gemmell CH. Flow cytometric evaluation of material-induced platelet and complement activation. J Biomater Sci Polym Ed. 2000; 11(11): 1197–1210.
  67. Bode AP, Orton SM, Frye MJ, et al. Vesiculation of platelets during in vitro aging. Blood. 1991; 77(4): 887–895.
  68. Bode AP, Knupp CL. Effect of cold storage on platelet glycoprotein Ib and vesiculation. Transfusion. 1994; 34(8): 690–696.
  69. Gelderman MP, Carter LB, Simak J. High counts of potentially pathogenic cell membrane microparticles in apheresis platelets. Blood. 2004; 104: 988a.
  70. Blajchman MA. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J Thromb Haemost. 2003; 1(7): 1637–1641.
  71. McCullough J, Vesole DH, Benjamin RJ, et al. Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: the SPRINT Trial. Blood. 2004; 104(5): 1534–1541.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Journal of Transfusion Medicine dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest Via Medica sp. z o.o. sp. komandytowa, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl