English Polski
Tom 17, Nr 4 (2024)
Sprawozdanie z konferencji / Sprawozdanie
Opublikowany online: 2024-12-23

dostęp otwarty

Wyświetlenia strony 14
Wyświetlenia/pobrania artykułu 6
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Wybrane zagadnienia dotyczące inaktywacji czynników chorobotwórczych w składnikach krwi w świetle doniesień prezentowanych podczas 34. Regionalnego Kongresu International Society of Blood Transfusion (ISBT) w Barcelonie, 23–27 czerwca 2024 roku

Paulina Goczyńska1, Joanna Lasocka1, Elżbieta Lachert1
DOI: 10.5603/jtm.102648
Journal of Transfusion Medicine 2024;17(4):190-197.

Streszczenie

Nie wymagane

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Ramirez-Arcos S. Platelet component safety in the era of advanced bacterial screening and pathogen inactivation. Vox Sang. 2024; 119 (S1): WP09-L04.
  2. Goczyńska P, Lasocka J, Lachert E. Selected issues on pathogen inactivation in blood components; reports presented at the 33rd Regional Congress of the International Society of Blood Transfusion (ISBT) in Gothenburg, June 17–21, 2023. J Transf Med. 2023; 16(4): 278–283.
  3. Culibrk B, Howell A, Walsh G M, et al. Quantifying residual red blood cells in platelet and plasma components — flow cytometry and visual inspection tool support implementation of pathogen inactivation. Vox Sang. 2024; 119 (S1): PA27-LO3.
  4. Kutac D, Bohonek M, Landova L, et al. Effect on pathogen reduction using riboflavin and UV light, subsequent crryopreservation and thawing on red blood cells and platelets concentrates. Vox Sang. 2024; 119 (S1): PA27-L04.
  5. Isola H, Galvanin A, Pissenem Rudwill F, et al. Impact of no agitation on buffy coat platelet concentrates during reduction of residua amotosalen (CAD) after pathogen inactivation. Vox Sang. 2024; 119 (S1): PA27-L05.
  6. Isola H, Pissenem Rudwill F, Galvanin A, et al. Impact of a 46 hours CAD duration on pathogen reduced buffy coat platelet concentrate double storage quality. Vox Sang. 2024; 119 (S1): P311.
  7. Greenwall B, Reeder K, Anani W. Elevated plasma testosterone concentrations with males on testosterone replacement therapy are mitigated with pathogen reduction technology. Vox Sang. 2024; 119 (S1): P294.
  8. Nahata P, McCormack M, Johnson A, et al. Amotosalen/UVA treatment of platelet and plasma components to inactivate WHO reference bacterial strains. Vox Sang. 2024; 119 (S1): P292.
  9. Krath M, Nahata P, McCormack, et al. Amotosalen/UVA treatment of Bacillus mobilis, Acinetobacter seifertii, Staphylococcus saprophyticus, and Leclercia adecarboxylata from a contaminated apheresis platelet unit. Vox Sang. 2024; 119 (S1): P293.
  10. Lambert A, McCague, McGhee K, et al. Succesfull inactivation of pathogenic bacterial strains in double-dose pooled buffy coat platelet using Amotosalen/UVA pathogen reduction treatment. Vox Sang. 2024; 119 (S1): P303.
  11. Alsughaiyr A, Alsaif A, Pukhta I, et al. The impact of pathogen reduction technology for platelets on the incidence of transfusion reactions — a single center study. Vox Sang. 2024; 119 (S1): P317.
  12. Puła M, Picard-Maureau M, Parazmowska, The impact of plasma pooling, pathogen-reduction and the freeze/thaw proces on plasma quality and standarization. Vox Sang. 2024; 119 (S1): P299.
  13. Tsalas S, Fortis S P, Tsantes A G, et al. The platelet-derived microvesicles in pathogen ivactivated apheresis bags stored in PAS. Vox Sang. 2024; 119 (S1): P302.
  14. Fischer S, Zilkenat S, Schulze T, et al. Dose-dependent inactivation of Plasmodium falciparum in red blood cel concentrates by treatment with short wavelength ultraviolet light. Vox Sang. 2024; 119 (S1): P316.
  15. Vera B, Larrea L, Vaya M, et al. Comparision of the quality parameters of irradiated vs pathogen-reduces platelet products. Vox Sang. 2024; 119 (S1): P315.