open access

Vol 69, No 1 (2018)
MARITIME MEDICINE Review article
Published online: 2018-03-28
Submitted: 2018-01-30
Accepted: 2018-03-07
Get Citation

Maritime environment health risks related to pathogenic microorganisms in seawater

Richard Pougnet, Laurence Pougnet, Ingrid Allio, David Lucas, Jean-Dominique Dewitte, Brice Loddé
DOI: 10.5603/IMH.2018.0006
·
International Maritime Health 2018;69(1):35-45.

open access

Vol 69, No 1 (2018)
MARITIME MEDICINE Review article
Published online: 2018-03-28
Submitted: 2018-01-30
Accepted: 2018-03-07

Abstract

Not available

Abstract

Not available
Get Citation

Keywords

“Seawater” [MeSH]; “Viruses” [MeSH]; “Bacteria” [MeSH]; “Mycoses” [MeSH]

About this article
Title

Maritime environment health risks related to pathogenic microorganisms in seawater

Journal

International Maritime Health

Issue

Vol 69, No 1 (2018)

Pages

35-45

Published online

2018-03-28

DOI

10.5603/IMH.2018.0006

Bibliographic record

International Maritime Health 2018;69(1):35-45.

Keywords

“Seawater” [MeSH]
“Viruses” [MeSH]
“Bacteria” [MeSH]
“Mycoses” [MeSH]

Authors

Richard Pougnet
Laurence Pougnet
Ingrid Allio
David Lucas
Jean-Dominique Dewitte
Brice Loddé

References (109)
  1. Quesada E, Bejar V, Valderrama MJ, et al. Isolation and characterization of moderately halophilic nonmotile rods from different saline habitats. Microbiologia. 1985; 1(1-2): 89–96.
  2. Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002; 28(1): 56–63.
  3. Tyler J. Occurrence in water of viruses of public health significance. Soc Appl Bacteriol Symp Ser. 1985; 14(59): 37S–46S.
  4. Victoria M, Fumian TM, Rocha MS, et al. Gastroenteric virus dissemination and influence of rainfall events in urban beaches in Brazil. J Appl Microbiol. 2014; 117(4): 1210–1218.
  5. Pougnet R, Allio I, Pougnet L. Prevention of infectious diseases in harbour divers: how environmental parameters can help. Int Marit Health. 2015; 66(3): 186–187.
  6. Pougnet R, Loddé B, Lucas D, et al. Oeil rouge non traumatique: etude d’un cas chez un windsurfer. Médicina Maritima. 2010; 10(2).
  7. Loddé B, Pougnet R, Roguedas-Contios AM, et al. Skin infection by Staphylococcus aureus in a fisherman: difficulty in continuing work on board. Int Marit Health. 2013; 64(3): 126–128.
  8. Sánchez-Nazario EE, Santiago-Rodriguez TM, Toranzos GA. Prospective epidemiological pilot study on the morbidity of bathers exposed to tropical recreational waters and sand. J Water Health. 2014; 12(2): 220–229.
  9. Gantzer C, Dubois É, Crance JM, et al. Devenir des virus entériques en mer et influence des facteurs environnementaux. Oceanologica Acta. 1998; 21(6): 983–992.
  10. Efstratiou MA. Managing coastal bathing water quality: the contribution of microbiology and epidemiology. Mar Pollut Bull. 2001; 42(6): 425–432.
  11. Droppo IG, Krishnappan BG, Liss SN, et al. Modelling sediment-microbial dynamics in the South Nation River, Ontario, Canada: Towards the prediction of aquatic and human health risk. Water Res. 2011; 45(12): 3797–3809.
  12. Stocker R. Marine microbes see a sea of gradients. Science. 2012; 338(6107): 628–633.
  13. Abdelzaher AM, Wright ME, Ortega C, et al. Presence of pathogens and indicator microbes at a non-point source subtropical recreational marine beach. Appl Environ Microbiol. 2010; 76(3): 724–732.
  14. Hartemann P. Contamination des eaux en milieu professionnel. EMC - Toxicologie-Pathologie. 2004; 1(2): 63–78.
  15. Fewtrell L, Godfree AF, Jones F, et al. Health effects of white-water canoeing. Lancet. 1992; 339(8809): 1587–1589.
  16. Shinoda S, Furumai Y, Katayama SI, et al. Ecological study of pathogenic vibrios in aquatic environments. Biocontrol Sci. 2013; 18(1): 53–58.
  17. Huehn S, Eichhorn C, Urmersbach S, et al. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol. 2014; 304(7): 843–850.
  18. Andersson Y, Ekdahl K. Wound infections due to Vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Euro Surveill. 2006; 11(8): E060803.2.
  19. Schets FM, van den Berg HH, Demeulmeester AA, et al. Vibrio alginolyticus infections in the Netherlands after swimming in the North Sea. Euro Surveill. 2006; 11(11): E061109.3.
  20. Vezzulli L, Pezzati E, Brettar I, et al. Effects of Global Warming on Vibrio Ecology. Microbiol Spectr. 2015; 3(3).
  21. Baker-Austin C, Trinanes J, Taylor N, et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Clim Change. 2012; 3(1): 73–77.
  22. Huehn S, Eichhorn C, Urmersbach S, et al. Pathogenic vibrios in environmental, seafood and clinical sources in Germany. Int J Med Microbiol. 2014; 304(7): 843–850.
  23. Baker-Austin C, Trinanes JA, Salmenlinna S, et al. Heat Wave-Associated Vibriosis, Sweden and Finland, 2014. Emerg Infect Dis. 2016; 22(7): 1216–1220.
  24. Baker-Austin C, Trinanes J, Gonzalez-Escalona N, et al. Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol. 2017; 25(1): 76–84.
  25. Baker-Austin C, Oliver JD. Rapidly developing and fatal Vibrio vulnificus wound infection. IDCases. 2016; 6: 13.
  26. Ahmed W, Gyawali P, Sidhu JPS, et al. Relative inactivation of faecal indicator bacteria and sewage markers in freshwater and seawater microcosms. Lett Appl Microbiol. 2014; 59(3): 348–354.
  27. Konishi K, Saito N, Shoji E, et al. Helicobacter pylori: longer survival in deep ground water and sea water than in a nutrient-rich environment. APMIS. 2007; 115(11): 1285–1291.
  28. Twing KI, Kirchman DL, Campbell BJ. Temporal study of Helicobacter pylori presence in coastal freshwater, estuary and marine waters. Water Res. 2011; 45(4): 1897–1905.
  29. Paerl HW, Paul VJ. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 2012; 46(5): 1349–1363.
  30. Osborne NJ, Shaw GR. Dermatitis associated with exposure to a marine cyanobacterium during recreational water exposure. BMC Dermatol. 2008; 8: 5.
  31. Bonafé J, Grigorieff-Larrue N, Bauriaud R. Les mycobactérioses cutanées atypiques. Résultats d’une enquête nationale. Ann Dermatol Venereol. 1992; 119: 463–70.
  32. Holt HM, Gahrn-Hansen B, Bruun B. Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect. 2005; 11(5): 347–352.
  33. González-Serrano CJ, Santos JA, García-López ML, et al. Virulence markers in Aeromonas hydrophila and Aeromonas veronii biovar sobria isolates from freshwater fish and from a diarrhoea case. J Appl Microbiol. 2002; 93(3): 414–419.
  34. Casabianca A, Orlandi C, Barbieri F, et al. Effect of starvation on survival and virulence expression of Aeromonas hydrophila from different sources. Arch Microbiol. 2015; 197(3): 431–438.
  35. Hokajärvi AM, Pitkänen T, Siljanen HMP, et al. Occurrence of thermotolerant Campylobacter spp. and adenoviruses in Finnish bathing waters and purified sewage effluents. J Water Health. 2013; 11(1): 120–134.
  36. Goodwin KD, McNay M, Cao Y, et al. A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater and beach sand. Water Res. 2012; 46(13): 4195–4207.
  37. Mohammed RL, Echeverry A, Stinson CM, et al. Survival trends of Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium perfringens in a sandy South Florida beach. Mar Pollut Bull. 2012; 64(6): 1201–1209.
  38. Boutin JP, Delolme H. Andre L-J. Eau de mer et pathologie. Médecine d’Afrique Noire. 1992; 39(3): 176–97.
  39. Sivonen K. Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria. Adv Exp Med Biol. 2008; 619: 539–557.
  40. Meriluoto JA, Eriksson JE, Harada K, et al. Internal surface reversed-phase high-performance liquid chromatographic separation of the cyanobacterial peptide toxins microcystin-LA, -LR, -YR, -RR and nodularin. J Chromatogr. 1990; 509(2): 390–395.
  41. Gressier M, Mbayo D, Deramond H, et al. First case of human spondylodiscitis due to Shewanella algae. Int J Infect Dis. 2010; 14 Suppl 3: e261–e264.
  42. Levy PY, Tessier JL. Arthritis due to Shewanella putrefaciens. Clin Infect Dis. 1998; 26(2): 536.
  43. Botelho-Nevers E, Gouriet F, Rovery C, et al. First case of osteomyelitis due to Shewanella algae. J Clin Microbiol. 2005; 43(10): 5388–5390.
  44. Liu MC, Gau SJ, Wu HC. Acute exudative tonsillitis caused by Shewanella algae in a healthy child. Scand J Infect Dis. 2006; 38(11-12): 1104–1105.
  45. Dominguez H, Vogel BF, Gram L, et al. Shewanella alga Bacteremia in Two Patients with Lower Leg Ulcers. Clin Infect Dis. 1996; 22(6): 1036–1039.
  46. Holt HM, Søgaard P, Gahrn-Hansen B. Ear infections with Shewanella alga: a bacteriologic, clinical and epidemiologic study of 67 cases. Clin Microbiol Infect. 1997; 3(3): 329–334.
  47. Escudero MM, del Pozo LJ, Jubert E, et al. Cutaneous Ulcer at the Site of Radiation-Induced Dermatitis Caused by Infection With Vibrio alginolyticus. Actas Dermosifiliogr. 2015; 106(9): 774–775.
  48. Zoltan TB, Taylor KS, Achar SA. Health issues for surfers. Am Fam Physician. 2005; 71(12): 2313–2317.
  49. Loddé B, Mahé C, Jacolot L, et al. Skin Diseases Affecting High-Level Competition Sailors: Descriptive Study Carried Out During the 2012 AG2R Transatlantic Boat Race. Wilderness Environ Med. 2016; 27(1): 39–45.
  50. Gomez JM, Fajardo R, Patiño JF, et al. Necrotizing fasciitis due to Vibrio alginolyticus in an immunocompetent patient. J Clin Microbiol. 2003; 41(7): 3427–3429.
  51. Leveque N, Andreoletti L, Laurent A. A novel mode of transmission for human enterovirus infection is swimming in contaminated seawater: implications in public health and in epidemiological surveillance. Clin Infect Dis. 2008; 47(5): 624–626.
  52. Nestor I. [Several health problems caused by viral contamination of sea water]. Rev Roum Virol. 1994; 45(1-2): 69–82.
  53. De Flora S, De Renzi GP, Badolati G. Detection of animal viruses in coastal seawater and sediments. Appl Microbiol. 1975; 30(3): 472–475.
  54. Rönnqvist M, Ziegler T, von Bonsdorff CH, et al. Detection method for avian influenza viruses in water. Food Environ Virol. 2012; 4(1): 26–33.
  55. Smith AW, Skilling DE, Castello JD, et al. Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses. Med Hypotheses. 2004; 63(4): 560–566.
  56. Kadoi K, Kadoi BK. Stability of feline caliciviruses in marine water maintained at different temperatures. New Microbiol. 2001; 24(1): 17–21.
  57. Moresco V, Viancelli A, Nascimento MA, et al. Microbiological and physicochemical analysis of the coastal waters of southern Brazil. Mar Pollut Bull. 2012; 64(1): 40–48.
  58. Rigotto C, Victoria M, Moresco V, et al. Assessment of adenovirus, hepatitis A virus and rotavirus presence in environmental samples in Florianopolis, South Brazil. J Appl Microbiol. 2010; 109(6): 1979–1987.
  59. Félix JL, Fernandez YC, Velarde-Félix JS, et al. Detection and phylogenetic analysis of hepatitis A virus and norovirus in marine recreational waters of Mexico. J Water Health. 2010; 8(2): 269–278.
  60. Silva AM, Vieira H, Martins N, et al. Viral and bacterial contamination in recreational waters: a case study in the Lisbon bay area. J Appl Microbiol. 2010; 108(3): 1023–1031.
  61. Love DC, Rodriguez RA, Gibbons CD, et al. Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA. J Water Health. 2014; 12(1): 136–150.
  62. Vipond IB, Caul EO, Hirst D, et al. National epidemic of Lordsdale Norovirus in the UK. J Clin Virol. 2004; 30(3): 243–247.
  63. Dancer D, Rangdale RE, Lowther JA, et al. Human norovirus RNA persists in seawater under simulated winter conditions but does not bioaccumulate efficiently in Pacific Oysters (Crassostrea gigas). J Food Prot. 2010; 73(11): 2123–2127.
  64. Sunderland D, Graczyk TK, Tamang L, et al. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. Water Res. 2007; 41(15): 3483–3489.
  65. Graczyk TK, Sunderland D, Tamang L, et al. Bather density and levels of Cryptosporidium, Giardia, and pathogenic microsporidian spores in recreational bathing water. Parasitol Res. 2007; 101(6): 1729–1731.
  66. Veraldi S, Persico MC. Cutaneous larva migrans in a beach soccer player. Clin J Sport Med. 2006; 16(5): 430–431.
  67. Graczyk TK, Sunderland D, Tamang L, et al. Quantitative evaluation of the impact of bather density on levels of human-virulent microsporidian spores in recreational water. Appl Environ Microbiol. 2007; 73(13): 4095–4099.
  68. Cordero L, Norat J, Mattei H, et al. Seasonal variations in the risk of gastrointestinal illness on a tropical recreational beach. J Water Health. 2012; 10(4): 579–593.
  69. Park KH, Jung SI, Jung YS, et al. Marine bacteria as a leading cause of necrotizing fasciitis in coastal areas of South Korea. Am J Trop Med Hyg. 2009; 80(4): 646–650.
  70. Park JC, Lee MS, Lee DH, et al. Inactivation of bacteria in seawater by low-amperage electric current. Appl Environ Microbiol. 2003; 69(4): 2405–2408.
  71. Lim TK, Stebbings AE. Fulminant necrotising fasciitis caused by Vibrio parahaemolyticus. Singapore Med J. 1999; 40(9): 596–597.
  72. Bross MH, Soch K, Morales R, et al. Vibrio vulnificus infection: diagnosis and treatment. Am Fam Physician. 2007; 76(4): 539–544.
  73. Baker-Austin C, Trinanes JA, Salmenlinna S, et al. Heat Wave-Associated Vibriosis, Sweden and Finland, 2014. Emerg Infect Dis. 2016; 22(7): 1216–1220.
  74. Twing KI, Kirchman DL, Campbell BJ. Temporal study of Helicobacter pylori presence in coastal freshwater, estuary and marine waters. Water Res. 2011; 45(4): 1897–1905.
  75. Konishi K, Saito N, Shoji E, et al. Helicobacter pylori: longer survival in deep ground water and sea water than in a nutrient-rich environment. APMIS. 2007; 115(11): 1285–1291.
  76. Vogel BF, Holt HM, Gerner-Smidt P, et al. Homogeneity of Danish environmental and clinical isolates of Shewanella algae. Appl Environ Microbiol. 2000; 66(1): 443–448.
  77. Leong J, Mirkazemi M, Kimble F. Shewanella putrefaciens hand infection. Aust N Z J Surg. 2000; 70(11): 816–817.
  78. Holt HM, Gahrn-Hansen B, Bruun B. Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect. 2005; 11(5): 347–352.
  79. Papanaoum K, Marshmann G, Gordon LA, et al. Concurrent infection due to Shewanella putrefaciens and Mycobacterium marinum acquired at the beach. Australas J Dermatol. 1998; 39(2): 92–95.
  80. Grocholski AS, Delage M, Samimi M, et al. Dermohypodermite aiguë de la jambe droite (S. putrefaciens) après une baignade. Ann Dermatol Venereol. 2009; 136(1): 59–60.
  81. Süzük S, Yetener V, Ergüngör F, et al. Cerebellar abscess caused by Shewanella putrefaciens. Scand J Infect Dis. 2004; 36(8): 621–622.
  82. Pagani L, Lang A, Vedovelli C, et al. Soft tissue infection and bacteremia caused by Shewanella putrefaciens. J Clin Microbiol. 2003; 41(5): 2240–2241.
  83. Torregrossa MV, Casuccio A. Correlation between staphylococcal skin infections and sea bathing: a case-control study. Ann Ig. 2001; 13(1): 19–24.
  84. Shuval HI. The transmission of virus disease by the marine environment. Schriftenr Ver Wasser Boden Lufthyg. 1988; 78: 7–23.
  85. Ishida S, Yoshizumi S, Ikeda T, et al. Detection and molecular characterization of hepatitis E virus in clinical, environmental and putative animal sources. Arch Virol. 2012; 157(12): 2363–2368.
  86. Pandian TK, Deziel PJ, Otley CC, et al. Mycobacterium marinum infections in transplant recipients: case report and review of the literature. Transpl Infect Dis. 2008; 10(5): 358–363.
  87. Katayama H, Shimasaki A, Ohgaki S. Development of a virus concentration method and its application to detection of enterovirus and norwalk virus from coastal seawater. Appl Environ Microbiol. 2002; 68(3): 1033–1039.
  88. Patti AM, Aulicino FA, De Filippis P, et al. Identification of enteroviruses isolated from sea-water: indirect immunofluorescence (IIF). Boll Soc Ital Biol Sper. 1990; 66(6): 595–600.
  89. Patti AM, De Filippis P, Gabrieli R, et al. Interactions between the human viruses and unicellular algae in marine environment. Ann Ig. 1991; 3(2): 101–104.
  90. Blacklow NR. Norwalk virus and others calciviruses. In: Barons S. ed. Medical Microbiology 4th edition. University of Texas, USA 1996.
  91. Wyn-Jones AP, Pallin R, Dedoussis C, et al. The detection of small round-structured viruses in water and environmental materials. J Virol Methods. 2000; 87(1-2): 99–107.
  92. Sunderland D, Graczyk TK, Tamang L, et al. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. Water Res. 2007; 41(15): 3483–3489.
  93. Graczyk TK, Sunderland D, Tamang L, et al. Bather density and levels of Cryptosporidium, Giardia, and pathogenic microsporidian spores in recreational bathing water. Parasitol Res. 2007; 101(6): 1729–1731.
  94. Graczyk TK, Sunderland D, Tamang L, et al. Quantitative evaluation of the impact of bather density on levels of human-virulent microsporidian spores in recreational water. Appl Environ Microbiol. 2007; 73(13): 4095–4099.
  95. Koreivienė J, Anne O, Kasperovičienė J, et al. Cyanotoxin management and human health risk mitigation in recreational waters. Environ Monit Assess. 2014; 186(7): 4443–4459.
  96. Diez-Valcarce M, Kokkinos P, Söderberg K, et al. Occurrence of human enteric viruses in commercial mussels at retail level in three European countries. Food Environ Virol. 2012; 4(2): 73–80.
  97. Lauro FM, McDougald D, Thomas T, et al. The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci U S A. 2009; 106(37): 15527–15533.
  98. Tanzer J, Macdonald A, Schofield S. Infective skin conditions in an adult sea-going population. J R Nav Med Serv. 2014; 100(1): 47–55.
  99. Loddé B, Mahé C, Jacolot L, et al. Skin Diseases Affecting High-Level Competition Sailors: Descriptive Study Carried Out During the 2012 AG2R Transatlantic Boat Race. Wilderness Environ Med. 2016; 27(1): 39–45.
  100. Vakulova IN, Myznikov IL, Kutelev GM, et al. [Epidemiology of mycoses in submariners based on the Kola Peninsula]. Aviakosm Ekolog Med. 2003; 37(4): 23–26.
  101. Fayer R. Infectivity of microsporidia spores stored in seawater at environmental temperatures. J Parasitol. 2004; 90(3): 654–657.
  102. Anderson JH. In vitro survival of human pathogenic fungi in seawater. Sabouraudia. 1979; 17(1): 1–12.
  103. Dzawachiszwili N, Landau JW, Newcomer VD, et al. he effect of sea water and sodium chloride on the growth of fungi pathogenic to man. J Invest Dermatol. 1964; 43: 103–109.
  104. El Amraoui B, El Amraoui M, Cohen N, et al. Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms. J Mycol Med. 2014; 24(4): e149–e153.
  105. El Amraoui B, El Amraoui M, Cohen N, et al. Antifungal and antibacterial activity of marine microorganisms. Ann Pharm Fr. 2014; 72(2): 107–111.
  106. Pushpanathan M, Gunasekaran P, Rajendhran J. Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans. PLoS One. 2013; 8(7): e69316.
  107. Dhayanithi NB, Kumar TT, Kalaiselvam M, et al. Anti-dermatophytic activity of marine sponge, Sigmadocia carnosa (Dendy) on clinically isolated fungi. Asian Pac J Trop Biomed. 2012; 2(8): 635–639.
  108. Shuval H. Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment. J Water Health. 2003; 1(2): 53–64.
  109. Bandino JP, Hang A, Norton SA. The Infectious and Noninfectious Dermatological Consequences of Flooding: A Field Manual for the Responding Provider. Am J Clin Dermatol. 2015; 16(5): 399–424.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail:  viamedica@viamedica.pl