Vol 8, No 2 (2017)
Review paper
Published online: 2017-09-06

open access

Page views 930
Article views/downloads 4056
Get Citation

Connect on Social Media

Connect on Social Media

Allogeneic hematopoietic stem cell transplantation for treating patients with myelofibrosis

Elżbieta Patkowska, Joanna Góra-Tybor
Hematologia 2017;8(2):132-143.

Abstract

Within Ph-negative myeloproliferative types of cancer, myelofibrosis is the most frequent indication for performing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Because this is a high-risk procedure, only those patients with a predicted overall survival below 5 years become eligible, as well as those of intermediate-2 or high disease risk; as defined by the IPSS, DIPSS and DIPSS Plus prognostic indices. It has however recently been recognised that patients with a poor prognosis, who belong to the intermediate-1 disease risk group, need to be distinguished and also considered for allo-HSCT. According to ELN/EBMT recommendations from 2015, this group should include patients requiring red blood cell concentrate transfusions who have more than 2% blasts in the circulation and/or an adverse karyotype. When qualifying patients for transplantation, consideration should also be given to adverse molecular risk factors such as the so-called triple negativity (absence of JAK, CALR and MPL mutations) and the presence of ASXL1 mutation. Over recent years, the number of allo-HSCT performed on patients with MF has significantly risen because the number of transplantations using reduced-intensity conditioning regimens has increased, together with those from unrelated donors (cord blood, haploidentical donors). There is a lack of randomised studies comparing the effectiveness of this transplantation procedure according to the types of conditioning and donor selection.

References

  1. Kekre N, Ho VT. Allogeneic hematopoietic stem cell transplantation for myelofibrosis and chronic myelomonocytic leukemia. Am J Hematol. 2016; 91(1): 123–130.
  2. Srour SA, Devesa SS, Morton LM, et al. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12. Br J Haematol. 2016; 174(3): 382–396.
  3. Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014; 124(16): 2507–13; quiz 2615.
  4. Moulard O, Mehta J, Fryzek J, et al. Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol. 2014; 92(4): 289–297.
  5. Kröger NM, Deeg JH, Olavarria E, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015; 29(11): 2126–2133.
  6. Tefferi A, Lasho TL, Tischer A, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014; 124(15): 2465–2466.
  7. Ditschkowski M, Elmaagacli AH, Trenschel R, et al. Dynamic International Prognostic Scoring System scores, pre-transplant therapy and chronic graft-versus-host disease determine outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis. Haematologica. 2012; 97(10): 1574–1581.
  8. Alchalby H, Yunus DR, Zabelina T, et al. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol. 2012; 157(1): 75–85.
  9. Scott BL, Gooley TA, Sorror ML, et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood. 2012; 119(11): 2657–2664.
  10. Gupta V, Malone AK, Hari PN, et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2014; 20(1): 89–97.
  11. Rondelli D, Goldberg JD, Isola L, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014; 124(7): 1183–1191.
  12. Kröger N, Giorgino T, Scott BL, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015; 125(21): 3347–50; quiz 3364.
  13. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434(7037): 1144–1148.
  14. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007; 356(5): 459–468.
  15. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013; 369(25): 2391–2405.
  16. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013; 369(25): 2379–2390.
  17. Harrison CN, Vannucchi AM. Closing the gap: genetic landscape of MPN. Blood. 2016; 127(3): 276–278.
  18. Andrikovics H, Krahling T, Balassa K, et al. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations. Haematologica. 2014; 99(7): 1184–1190.
  19. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014; 28(7): 1494–1500.
  20. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013; 27(9): 1861–1869.
  21. Guglielmelli P, Lasho TL, Rotunno G, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014; 28(9): 1804–1810.
  22. Tefferi A, Wassie EA, Lasho TL, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014; 28(7): 1472–1477.
  23. Tefferi A, Pardanani A, Gangat N, et al. Leukemia risk models in primary myelofibrosis: an International Working Group study. Leukemia. 2012; 26(6): 1439–1441.
  24. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011; 29(4): 392–397.
  25. Caramazza D, Begna KH, Gangat N, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011; 25(1): 82–88.
  26. Bacigalupo A, Soraru M, Dominietto A, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant. 2010; 45(3): 458–463.
  27. Wong KM, Atenafu EG, Kim D, et al. Incidence and risk factors for early hepatotoxicity and its impact on survival in patients with myelofibrosis undergoing allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012; 18(10): 1589–1599.
  28. Kerbauy DMB, Gooley TA, Sale GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant. 2007; 13(3): 355–365.
  29. Schmohl JU, Groh C, Faul C, et al. Allogeneic hematopoietic cell transplantation in patients with myelofibrosis: A single center experience. Ann Hematol. 2016; 95(6): 973–983.
  30. Nakaya A, Mori T, Tanaka M, et al. Does the hematopoietic cell transplantation specific comorbidity index (HCT-CI) predict transplantation outcomes? A prospective multicenter validation study of the Kanto Study Group for Cell Therapy. Biol Blood Marrow Transplant. 2014; 20(10): 1553–1559.
  31. Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016; 30(8): 1701–1707.
  32. Spoerl S, Mathew NR, Bscheider M, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014; 123(24): 3832–3842.
  33. Carniti C, Gimondi S, Vendramin A, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015; 21(16): 3740–3749.
  34. Krӧger N, Kadir S, Zabelina T. Ruxolitinib during peritransplant period for myelofibrosis patient undergoing allogeneic stem cell transplantation reduces acute graft-versus-host disease. Blood. 2016; 128: 2242.
  35. Jaekel N, Behre G, Behning A, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant. 2014; 49(2): 179–184.
  36. Stübig T, Alchalby H, Ditschkowski M, et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia. 2014; 28(8): 1736–1738.
  37. Robin M, Francois, S, Huynh A, et al. Ruxolitinib before allogeneic hematopoietic stem cell transplantation (HSCT) In patients with myelofibrosis: a preliminary descriptive report of the JAK ALLO study, a phase II trial sponsored by Goelams-FIM in collaboration with the Sfgmtc. Blood. 2013; 122: 306.
  38. Shanavas M, Popat U, Michaelis LC, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016; 22(3): 432–440.
  39. Masarova L, Popat UR, Bose, P, et al. Allogeneic stem cell transplantation versus medical therapy in patients with advanced myelofibrosis: matched survival analysis and the effect of JAK2 inhibitor therapy. Blood. 2016; 128: abstract 4687.
  40. Robin M, Tabrizi R, Mohty M, et al. Allogeneic haematopoietic stem cell transplantation for myelofibrosis: a report of the Société Française de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC). Br J Haematol. 2011; 152(3): 331–339.
  41. Kröger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009; 114(26): 5264–5270.
  42. Tefferi A, Barbui T, Tefferi A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016; 91(12): 1262–1271.
  43. Armand P, Kim HT, Virtanen JM, et al. Iron overload in allogeneic hematopoietic cell transplantation outcome: a meta-analysis. Biol Blood Marrow Transplant. 2014; 20(8): 1248–1251.
  44. Kataoka K, Nannya Y, Hangaishi A, et al. Influence of pretransplantation serum ferritin on nonrelapse mortality after myeloablative and nonmyeloablative allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009; 15(2): 195–204.
  45. Dadwal SS, Tegtmeier B, Liu X, et al. Impact of pretransplant serum ferritin level on risk of invasive mold infection after allogeneic hematopoietic stem cell transplantation. Eur J Haematol. 2015; 94(3): 235–242.
  46. Kim YuRi, Kim JS, Cheong JW, et al. Transfusion-associated iron overload as an adverse risk factor for transplantation outcome in patients undergoing reduced-intensity stem cell transplantation for myeloid malignancies. Acta Haematol. 2008; 120(3): 182–189.
  47. Trottier BJ, Burns LJ, DeFor TE, et al. Association of iron overload with allogeneic hematopoietic cell transplantation outcomes: a prospective cohort study using R2-MRI-measured liver iron content. Blood. 2013; 122(9): 1678–1684.
  48. Carreau N, Tremblay D, Savona M, et al. Ironing out the details of iron overload in myelofibrosis: Lessons from myelodysplastic syndromes. Blood Rev. 2016; 30(5): 349–356.
  49. Murata M, Nishida T, Taniguchi S, et al. Allogeneic transplantation for primary myelofibrosis with BM, peripheral blood or umbilical cord blood: an analysis of the JSHCT. Bone Marrow Transplant. 2014; 49(3): 355–360.
  50. Bregante S, Dominietto A, Ghiso A, et al. Improved Outcome of Alternative Donor Transplantations in Patients with Myelofibrosis: From Unrelated to Haploidentical Family Donors. Biol Blood Marrow Transplant. 2016; 22(2): 324–329.
  51. Robin M, Giannotti F, Deconinck E, et al. Eurocord and Chronic Malignancies Working Party-European Group for Blood and Marrow Transplantation (CMWP-EBMT). Unrelated cord blood transplantation for patients with primary or secondary myelofibrosis. Biol Blood Marrow Transplant. 2014; 20(11): 1841–1846.
  52. Patriarca F, Bacigalupo A, Sperotto A, et al. GITMO. Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica. 2008; 93(10): 1514–1522.
  53. Ballen KK, Shrestha S, Sobocinski KA, et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2010; 16(3): 358–367.
  54. Abelsson J, Merup M, Birgegård G, et al. Nordic MPD Study Group. The outcome of allo-HSCT for 92 patients with myelofibrosis in the Nordic countries. Bone Marrow Transplant. 2012; 47(3): 380–386.
  55. Lussana F, Rambaldi A, Finazzi MC, et al. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia vera or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: a report from the MPN Subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Haematologica. 2014; 99(5): 916–921.
  56. Gergis U, Kuriakose E, Shore T, et al. Allogeneic Transplantation for Patients With Advanced Myelofibrosis: Splenomegaly and High Serum LDH are Adverse Risk Factors for Successful Engraftment. Clin Lymphoma Myeloma Leuk. 2016; 16(5): 297–303.
  57. Markiewicz M, Dzierzak Mietla M, Wieczorkiewicz A, et al. Safety and outcome of allogeneic stem cell transplantation in myelofibrosis. Eur J Haematol. 2016; 96(3): 222–228.
  58. Alchalby H, Badbaran A, Zabelina T, et al. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood. 2010; 116(18): 3572–3581.
  59. Anasetti C, Logan BR, Lee SJ, et al. Blood and Marrow Transplant Clinical Trials Network. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012; 367(16): 1487–1496.
  60. Stasia A, Ghiso A, Galaverna F, et al. CD34 selected cells for the treatment of poor graft function after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2014; 20(9): 1440–1443.
  61. Klyuchnikov E, El-Cheikh J, Sputtek A, et al. CD34(+)-selected stem cell boost without further conditioning for poor graft function after allogeneic stem cell transplantation in patients with hematological malignancies. Biol Blood Marrow Transplant. 2014; 20(3): 382–386.
  62. Champlin RE, Horowitz MM, van Bekkum DW, et al. Graft failure following bone marrow transplantation for severe aplastic anemia: risk factors and treatment results. Blood. 1989; 73(2): 606–613.
  63. Petersdorf EW, Hansen JA, Martin PJ, et al. Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N Engl J Med. 2001; 345(25): 1794–1800.
  64. Storb R, Prentice RL, Thomas ED, et al. Factors associated with graft rejection after HLA-identical marrow transplantation for aplastic anaemia. Br J Haematol. 1983; 55(4): 573–585.
  65. Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991; 78(8): 2120–2130.
  66. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014; 512(7512): 78–81.
  67. Alchalby H, Yunus DR, Zabelina T, et al. Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2016; 51(9): 1223–1227.



Hematology in Clinical Practice