Tom 9, Nr 2 (2024)
Wytyczne / stanowisko ekspertów
Opublikowany online: 2024-07-30
Wyświetlenia strony 479
Wyświetlenia/pobrania artykułu 138
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Stanowisko Ekspertów Polskiego Towarzystwa Ginekologów i Położników w zakresie suplementacji folianów oraz warunków stosowania dodatkowej suplementacji choliny oraz witamin B6 i B12 w okresie przedkoncepcyjnym, ciąży i połogu

Agnieszka Seremak-Mrozikiewicz1, Dorota Bomba-Opoń, Krzysztof Drews, Piotr Kaczmarek, Mirosław Wielgoś, Piotr Sieroszewski
Ginekologia i Perinatologia Praktyczna 2024;9(2):154-156.

Streszczenie

Brak

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Tinelli C, Di Pino A, Ficulle E, et al. Hyperhomocysteinemia as a Risk Factor and Potential Nutraceutical Target for Certain Pathologies. Front Nutr. 2019; 6: 49.
  2. Yadav U, Kumar P, Rai V. Maternal biomarkers for early prediction of the neural tube defects pregnancies. Birth Defects Res. 2021; 113(7): 589–600.
  3. Dai C, Fei Y, Li J, et al. A Novel Review of Homocysteine and Pregnancy Complications. BioMed Research International. 2021; 2021: 1–14.
  4. Cawley S, O'Malley EG, Kennedy RAK, et al. The relationship between maternal plasma homocysteine in early pregnancy and birth weight. J Matern Fetal Neonatal Med. 2020; 33(18): 3045–3049.
  5. Unnikrishnan A, Freeman WM, Jackson J, et al. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019; 195: 172–185.
  6. Stover PJ. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics. 2011; 4(5): 293–305.
  7. Monk D, Mackay DJG, Eggermann T, et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019; 20(4): 235–248.
  8. Guéant JL, Namour F, Guéant-Rodriguez RM, et al. Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab. 2013; 24(6): 279–289.
  9. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr. 2006; 83(5): 993–1016.
  10. Behnia F, Parets SE, Kechichian T, et al. Fetal DNA methylation of autism spectrum disorders candidate genes: association with spontaneous preterm birth. Am J Obstet Gynecol. 2015; 212(4): 533.e1–533.e9.
  11. van der Put NM, Gabreëls F, Stevens EM, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet. 1998; 62(5): 1044–1051.
  12. Use of Folic Acid for Prevention of Spina Bifida and Other Neural Tube Defects—1983-1991. JAMA: The Journal of the American Medical Association. 1991; 266(9): 1190.
  13. Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. The Lancet. 1991; 338(8760): 131–137.
  14. Bower C, Stanley FJ. Dietary folate as a risk factor for neural-tube defects: evidence from a case-control study in Western Australia. Med J Aust. 1989; 150(11): 613–619.
  15. Czeizel AE, Dudás I, Paput L, et al. Prevention of neural-tube defects with periconceptional folic acid, methylfolate, or multivitamins? Ann Nutr Metab. 2011; 58(4): 263–271.
  16. Parker SE, Yazdy MM, Tinker SC, et al. The impact of folic acid intake on the association among diabetes mellitus, obesity, and spina bifida. Am J Obstet Gynecol. 2013; 209(3): 239.e1–239.e8.
  17. Jędrzejczak J, Bomba-Opoń D, Jakiel G, et al. Managing epilepsy in women of childbearing age - Polish Society of Epileptology and Polish Gynecological Society Guidelines. Ginekol Pol. 2017; 88(5): 278–284.
  18. Ferrazzi E, Tiso G, Di Martino D. Folic acid versus 5- methyl tetrahydrofolate supplementation in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2020; 253: 312–319.
  19. Petersen JM, Smith-Webb RS, Shaw GM, et al. National Birth Defects Prevention Study. Periconceptional intakes of methyl donors and other micronutrients involved in one-carbon metabolism may further reduce the risk of neural tube defects in offspring: a United States population-based case-control study of women meeting the folic acid recommendations. Am J Clin Nutr. 2023; 118(3): 720–728.
  20. Wilson RD, O'Connor DL. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep. 2021; 24: 101617.
  21. Obeid R, Holzgreve W, Pietrzik K. Is 5-methyltetrahydrofolate an alternative to folic acid for the prevention of neural tube defects? J Perinat Med. 2013; 41(5): 469–483.
  22. D'Souza SW, Glazier JD. Homocysteine Metabolism in Pregnancy and Developmental Impacts. Front Cell Dev Biol. 2022; 10: 802285.
  23. Bailey SW, Ayling JE. The pharmacokinetic advantage of 5-methyltetrahydrofolate for minimization of the risk for birth defects. Sci Rep. 2018; 8(1): 4096.
  24. Lamers Y, Prinz-Langenohl R, Moser R, et al. Supplementation with [6S]-5-methyltetrahydrofolate or folic acid equally reduces plasma total homocysteine concentrations in healthy women. Am J Clin Nutr. 2004; 79(3): 473–478.
  25. Henderson AM, Aleliunas RE, Loh SuP, et al. l-5-Methyltetrahydrofolate Supplementation Increases Blood Folate Concentrations to a Greater Extent than Folic Acid Supplementation in Malaysian Women. J Nutr. 2018; 148(6): 885–890.
  26. Houghton LA, Sherwood KL, Pawlosky R, et al. [6S]-5-Methyltetrahydrofolate is at least as effective as folic acid in preventing a decline in blood folate concentrations during lactation. Am J Clin Nutr. 2006; 83(4): 842–850.
  27. Cochrane KM, Elango R, Devlin AM, et al. Supplementation with (6)-5-methyltetrahydrofolic acid appears as effective as folic acid in maintaining maternal folate status while reducing unmetabolised folic acid in maternal plasma: a randomised trial of pregnant women in Canada. Br J Nutr. 2024; 131(1): 92–102.
  28. Greenberg J, Bell SJ. Multivitamin Supplementation During Pregnancy: Emphasis on Folic Acid and l-Methylfolate. Rev Obstet Gynecol. 2011; 126(3-4): 126.
  29. A. Seremak-Mrozikiewicz, M. Barlik, P. Borowczak, and K. Drewis, ‘The frequency of 677C > T polymorphism of MTHFR gene in the Polish population, Archives of Perinatal Medicine , vol. 19, no. 1, pp. 12–18, 2013. https://www.researchgate.net/publication/288119975_The_frequency_of_677C_T_polymorphism_of_MTHFR_gene_in_the_Polish_population (24.01.2024).
  30. Venn BJ, Green TJ, Moser R, et al. Comparison of the effect of low-dose supplementation with L-5-methyltetrahydrofolate or folic acid on plasma homocysteine: a randomized placebo-controlled study. Am J Clin Nutr. 2003; 77(3): 658–662.
  31. 6 Vitamin B12 and Folate. Clinical Pathology in the Elderly. : 33–35.
  32. Ipsos. Der Neue Pauly. .
  33. McGowan E, Hong X, Selhub J, et al. Association Between Folate Metabolites and the Development of Food Allergy in Children. The Journal of Allergy and Clinical Immunology: In Practice. 2020; 8(1): 132–140.e5.
  34. Chen Z, Xing Y, Yu X, et al. Effect of Folic Acid Intake on Infant and Child Allergic Diseases: Systematic Review and Meta-Analysis. Front Pediatr. 2020; 8: 615406.
  35. Hitlan R, DeSoto M. Synthetic folic acid supplementation during pregnancy may increase the risk of developing autism. Journal of Pediatric Biochemistry. 2016; 02(04): 251–261.
  36. Dwyer ER, Filion KB, MacFarlane AJ, et al. Who should consume high-dose folic acid supplements before and during early pregnancy for the prevention of neural tube defects? BMJ. 2022; 377: e067728.
  37. Raghavan R, Riley AW, Volk H, et al. Maternal Multivitamin Intake, Plasma Folate and Vitamin B Levels and Autism Spectrum Disorder Risk in Offspring. Paediatr Perinat Epidemiol. 2018; 32(1): 100–111.
  38. Tang JS, Cait A, White RM, et al. MR1-dependence of unmetabolized folic acid side-effects. Front Immunol. 2022; 13: 946713.
  39. Prinz-Langenohl R, Brämswig S, Tobolski O, et al. [6S]-5-methyltetrahydrofolate increases plasma folate more effectively than folic acid in women with the homozygous or wild-type 677C-->T polymorphism of methylenetetrahydrofolate reductase. Br J Pharmacol. 2009; 158(8): 2014–2021.
  40. L. Carboni, ‘Active Folate Versus Folic Acid: The Role of 5-MTHF (Methylfolate) in Human Health’, Integrative Medicine: A Clinician’s Journal, vol. 21, no. 3, p. 36, Jul. 2022, /pmc/articles/PMC9380836/ (25.01.2024).
  41. Cornet D, Cohen M, Clement A, et al. Association between the MTHFR-C677T isoform and structure of sperm DNA. Journal of Assisted Reproduction and Genetics. 2017; 34(10): 1283–1288.
  42. Servy EJ, Jacquesson-Fournols L, Cohen M, et al. MTHFR isoform carriers. 5-MTHF (5-methyl tetrahydrofolate) vs folic acid: a key to pregnancy outcome: a case series. J Assist Reprod Genet. 2018; 35(8): 1431–1435.
  43. Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective Actions of Dietary Choline. Nutrients. 2017; 9(8).
  44. Shaw GM, Carmichael SL, Yang W, et al. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol. 2004; 160(2): 102–109.
  45. Shaw G, Finnell R, Blom H, et al. Choline and Risk of Neural Tube Defects in a Folate-fortified Population. Epidemiology. 2009; 20(5): 714–719.
  46. Wiedeman AM, Barr SI, Green TJ, et al. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients. 2018; 10(10).
  47. Zeisel SH. Nutrition in pregnancy: the argument for including a source of choline. Int J Womens Health. 2013; 5: 193–199.
  48. Jaiswal SK, Sukla KK, Chauhan A, et al. Choline metabolic pathway gene polymorphisms and risk for Down syndrome: An association study in a population with folate-homocysteine metabolic impairment. Eur J Clin Nutr. 2017; 71(1): 45–50.
  49. Derbyshire E, Maes M. The Role of Choline in Neurodevelopmental Disorders-A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients. 2023; 15(13).
  50. Friedman SD, Shaw DWW, Artru AA, et al. Gray and white matter brain chemistry in young children with autism. Arch Gen Psychiatry. 2006; 63(7): 786–794.
  51. Horowitz-Kraus T, Brunst KJ, Cecil KM. Children With Dyslexia and Typical Readers: Sex-Based Choline Differences Revealed Using Proton Magnetic Resonance Spectroscopy Acquired Within Anterior Cingulate Cortex. Front Hum Neurosci. 2018; 12: 466.
  52. Jiang X, Yan J, West AA, et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012; 26(8): 3563–3574.
  53. Boeke CE, Gillman MW, Hughes MD, et al. Choline intake during pregnancy and child cognition at age 7 years. Am J Epidemiol. 2013; 177(12): 1338–1347.
  54. Adams JB, Kirby JK, Sorensen JC, et al. Evidence based recommendations for an optimal prenatal supplement for women in the US: vitamins and related nutrients. Matern Health Neonatol Perinatol. 2022; 8(1): 4.
  55. Strupp BJ, Powers BE, Velazquez R, et al. Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease. Curr Alzheimer Res. 2016; 13(1): 97–106.
  56. Molloy AM, Kirke PN, Troendle JF, et al. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification. Pediatrics. 2009; 123(3): 917–923.
  57. K. Kamiński, ‘Epigenetyczna regulacja aktywności genów w odpowiedzi na stymulacje żywieniowe. Rola ginekologa-położnika w programowaniu zdrowia potomstwa’, Ginekologia po Dyplomie , vol. 6, 2022. https://podyplomie.pl/ginekologia/38278,epigenetyczna-regulacja-aktywnosci-genow-w-odpowiedzi-na-stymulacje-zywieniowe-rola?page=2 (29.03.2024).
  58. A. Waśkiewicz, E. Sygnowska, and G. Broda, ‘Dietary intake of vitamins B6, B12 and folate in relation to homocysteine serum concentration in the adult Polish population - WOBASZ Project - PubMed’, Kardiol Pol, vol. 2010(68): 275–282.
  59. Candito M, Rivet R, Herbeth B, et al. Nutritional and genetic determinants of vitamin B and homocysteine metabolisms in neural tube defects: a multicenter case-control study. Am J Med Genet A. 2008; 146A(9): 1128–1133.
  60. K. Kamiński, M. Kucia, and E. Wietrak, ‘Epigenetyka, czyli jak przez metylację możemy oszukać genetyczne przeznaczenie. ’, Postępy Neonatologii, no. ; 1: 2015.
  61. Brody L, Conley M, Cox C, et al. A Polymorphism, R653Q, in the Trifunctional Enzyme Methylenetetrahydrofolate Dehydrogenase/Methenyltetrahydrofolate Cyclohydrolase/Formyltetrahydrofolate Synthetase Is a Maternal Genetic Risk Factor for Neural Tube Defects: Report of the Birth Defects Research Group. The American Journal of Human Genetics. 2002; 71(5): 1207–1215.
  62. Seremak-Mrozikiewicz A. The significance of folate metabolism in complications of pregnant women. Polish Gynaecology. 2013; 84(5).
  63. Drews K. Folate metabolism – epigenetic role of choline and vitamin B12 during pregnancy. Polish Gynaecology. 2015; 86(12).
  64. Tafuri L, Servy EJ, Menezo YJR. The hazards of excessive folic acid intake in MTHFR gene mutation carriers: An obstetric and gynecological perspective. Clinical Obstetrics, Gynecology and Reproductive Medicine. 2018; 4(2).