Tom 7, Nr 3 (2022)
Wytyczne / stanowisko ekspertów
Opublikowany online: 2022-06-23
Wyświetlenia strony 4698
Wyświetlenia/pobrania artykułu 1073
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Diagnostyka i postępowanie w ciążach wielopłodowych powikłanych ograniczeniem wzrastania płodu — rekomendacje Polskiego Towarzystwa Ginekologów i Położników

Katarzyna Kosińska-Kaczyńska1, Andrzej Torbé2, Sebastian Kwiatkowski2, Dariusz Borowski34, Grzegorz Breborowicz5, Krzysztof Czajkowski6, Bartosz Czuba7, Hubert Huras8, Katarzyna Janiak9, Anna Kajdy10, Jarosław Kalinka11, Przemysław Kosiński4, Bożena Leszczyńska-Gorzelak12, Radzisław Mierzyński12, Mariola Ropacka-Lesiak5, Piotr Sieroszewski11, Małgorzata Świątkowska-Freund13, Mirosław Wielgoś4, Mariusz Zimmer14
Ginekologia i Perinatologia Praktyczna 2022;7(3):157-165.

Streszczenie

Brak

Artykuł dostępny w formacie PDF

Dodaj do koszyka: 49,00 PLN

Posiadasz dostęp do tego artykułu?

Referencje

  1. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014; 19(2): 164–174.
  2. Yiannikourides A, Latunde-Dada GO. A short review of iron metabolism and pathophysiology of iron disorders. Medicines (Basel). 2019; 6(3).
  3. Pasricha SR, Tye-Din J, Muckenthaler MU, et al. Iron deficiency. Lancet. 2021; 397(10270): 233–248.
  4. Edison ES, Bajel A, Chandy M. Iron homeostasis: new players, newer insights. Eur J Haematol. 2008; 81(6): 411–424.
  5. Barragán-Ibañez G, Santoyo-Sánchez A, Ramos-Peñafiel CO. Iron deficiency anaemia. Revista Médica del Hospital General de México. 2016; 79(2): 88–97.
  6. Zimmer M, Sieroszewski P, Oszukowski P, et al. Polish Society of Gynecologists and Obstetricians recommendations on supplementation during pregnancy. Ginekol Pol. 2020; 91(10): 644–653.
  7. Krawczyk P, Sioma-Markowska U. Nutrition quality of pregnant women based on body mass index and the content of selected nutrients and energy in the daily diet. Ginekol Pol. 2021 [Epub ahead of print].
  8. Skrypnik D, Moszak M, Wender-Ozegowska E, et al. Comparison of Polish and international guidelines on diet supplements in pregnancy - review. Ginekol Pol. 2021; 92(4): 322–330.
  9. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017; 390(10100): 1211–1259.
  10. Levi M, Rosselli M, Simonetti M, et al. Epidemiology of iron deficiency anaemia in four European countries: a population-based study in primary care. Eur J Haematol. 2016; 97(6): 583–593.
  11. WHO. Nutritional anaemias. Report of a WHO scientific group. WHO Technical Report Series, No. 405. 1968. https://apps.who.int/iris/handle/10665/40707 (13.05.2022).
  12. Kassebaum NJ. GBD 2013 Anemia Collaborators. The global burden of anemia. Hematol Oncol Clin North Am. 2016; 30(2): 247–308.
  13. Levi M, Rosselli M, Simonetti M, et al. Epidemiology of iron deficiency anaemia in four European countries: a population-based study in primary care. Eur J Haematol. 2016; 97(6): 583–593.
  14. WHO. Worldwide prevalence of anaemia 1993-2005: WHO global database on anaemia. 2008. WHO. Worldwide prevalence of anaemia 1993-2005: WHO global database on anaemia. 2008. (13.05.2022).
  15. NICE. Anaemia - iron deficiency: what causes it? https://cks.nice.org.uk/topics/anaemia-iron-deficiency/background-information/causes/. (13.05.2022).
  16. Miller JL. Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med. 2013; 3(7).
  17. WHO A. Intermittent iron and folic acid supplementation during pregnancy in malaria- endemic areas. 2019.
  18. Breymann C, Breymann C. Anaemia Working Group. Iron deficiency anemia in pregnancy. Semin Hematol. 2015; 52(4): 339–347.
  19. Russell RB, Green NS, Steiner CA, et al. Cost of hospitalization for preterm and low birth weight infants in the United States. Pediatrics. 2007; 120(1): e1–e9.
  20. Colomer J, Colomer C, Gutierrez D, et al. Anaemia during pregnancy as a risk factor for infant iron deficiency: report from the Valencia Infant Anaemia Cohort (VIAC) study. Paediatr Perinat Epidemiol. 1990; 4(2): 196–204.
  21. Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years. Arch Pediatr Adolesc Med. 2006; 160(11): 1108–1113.
  22. Haider BA, Olofin I, Wang M, et al. Nutrition Impact Model Study Group (anaemia). Anaemia, prenatal iron use, and risk of adverse pregnancy outcomes: systematic review and meta-analysis. BMJ. 2013; 346: f3443.
  23. Vogel JP, Souza JP, Mori R, et al. Maternal complications and perinatal mortality: findings of the World Health Organization Multicountry Survey on Maternal and Newborn Health. BJOG BJOG-INT J OBSTET GY. 2014; 121: 76–88.
  24. Janz TG, Johnson RL, Rubenstein SD. Anemia in the emergency department: evaluation and treatment. Emerg Med Pract. 2013; 15(11): 1–15; quiz 15.
  25. Murray-Kolb LE. Iron status and neuropsychological consequences in women of reproductive age: what do we know and where are we headed? J Nutr. 2011; 141(4): 747S–755S.
  26. Muñoz M, Peña-Rosas JP, Robinson S, et al. Patient blood management in obstetrics: management of anaemia and haematinic deficiencies in pregnancy and in the post-partum period: NATA consensus statement. Transfus Med. 2018; 28(1): 22–39.
  27. Pavord S, Daru J, Prasannan N, et al. BSH Committee. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol. 2020; 188(6): 819–830.
  28. Radbruch L, Sabatowski R, Elsner F, et al. Validation of the German version of the brief fatigue inventory. J Pain Symptom Manage. 2003; 25(5): 449–458.
  29. Brownlie T, Utermohlen V, Hinton PS, et al. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr. 2004; 79(3): 437–443.
  30. Muñoz M, Gómez-Ramírez S, Besser M, et al. Current misconceptions in diagnosis and management of iron deficiency. Blood Transfus. 2017; 15(5): 422–437.
  31. Clark SF, Clark SF. Iron deficiency anemia. Nutr Clin Pract. 2008; 23(2): 128–141.
  32. Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011; 117(17): 4425–4433.
  33. Karaskova E, Pospisilova D, Velganova-Veghova M, et al. Importance of hepcidin in the etiopathogenesis of anemia in inflammatory bowel disease. Dig Dis Sci. 2021; 66(10): 3263–3269.
  34. Drabinski T, Zacharowski K, Meybohm P, et al. Estimating the epidemiological and economic impact of implementing preoperative anaemia measures in the german healthcare system: the health economic footprint of patient blood management. Adv Ther. 2020; 37(8): 3515–3536.
  35. Fowler AJ, Ahmad T, Phull MK, et al. Meta-analysis of the association between preoperative anaemia and mortality after surgery. Br J Surg. 2015; 102(11): 1314–1324.
  36. Wan S, Sparring V, Cabrales DA, et al. Clinical and budget impact of treating preoperative anemia in major orthopedic surgery - a retrospective observational study. J Arthroplasty. 2020; 35(11): 3084–3088.
  37. Beattie WS, Karkouti K, Wijeysundera DN, et al. Risk associated with preoperative anemia in noncardiac surgery: a single-center cohort study. Anesthesiology. 2009; 110(3): 574–581.
  38. Musallam KM, Tamim HM, Richards T, et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet. 2011; 378(9800): 1396–1407.
  39. Rössler J, Schoenrath F, Seifert B, et al. Iron deficiency is associated with higher mortality in patients undergoing cardiac surgery: a prospective study. Br J Anaesth. 2020; 124(1): 25–34.
  40. Blackburn CW, Morrow KL, Tanenbaum JE, et al. Clinical outcomes associated with allogeneic red blood cell transfusions in spinal surgery: a systematic review. Global Spine J. 2019; 9(4): 434–445.
  41. Filipescu D, Bănăţeanu R, Beuran M, et al. Perioperative patient blood management programme. Multidisciplinary recommendations from the . Rom J Anaesth Intensive Care. 2017; 24(2): 139–157.
  42. Clevenger B, Gurusamy K, Klein AA, et al. Systematic review and meta-analysis of iron therapy in anaemic adults without chronic kidney disease: updated and abridged Cochrane review. Eur J Heart Fail. 2016; 18(7): 774–785.
  43. Tolkien Z, Stecher L, Mander AP, et al. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: a systematic review and meta-analysis. PLoS One. 2015; 10(2): e0117383.
  44. Desai N, Schofield N, Richards T. Perioperative patient blood management to improve outcomes. Anesth Analg. 2018; 127(5): 1211–1220.
  45. Lyseng-Williamson KA, Keating GM. Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs. 2009; 69(6): 739–756.
  46. FERRLECIT (sodium ferric gluconate complex in sucrose injection). https://products.sanofi.ca/en/ferrlecit.pdf (13.05.2022).
  47. Limited VPU. Ferinject (ferric carboxymaltose) summary of product characteristics 2015edicines org uk/emc/product. https://www.medicines.org.uk/emc/product/5910/smpc (13.05.2022).
  48. Cançado RD, Muñoz M. Intravenous iron therapy: how far have we come? Rev Bras Hematol Hemoter. 2011; 33(6): 461–469.
  49. Pharma V. Iron products. https://www.viforpharma.com/en-gb/products/iron-products. (13.05.2022).
  50. Anker SD, Comin Colet J, Filippatos G, et al. FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009; 361(25): 2436–2448.
  51. van Veldhuisen DJ, Ponikowski P, van der Meer P, et al. EFFECT-HF Investigators. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation. 2017; 136(15): 1374–1383.
  52. Kulnigg S, Stoinov S, Simanenkov V, et al. A novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: the ferric carboxymaltose (FERINJECT) randomized controlled trial. Am J Gastroenterol. 2008; 103(5): 1182–1192.
  53. Evstatiev R, Alexeeva O, Bokemeyer B, et al. FERGI Study Group. Ferric carboxymaltose prevents recurrence of anemia in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2013; 11(3): 269–277.
  54. Evstatiev R, Marteau P, Iqbal T, et al. FERGI Study Group. FERGIcor, a randomized controlled trial on ferric carboxymaltose for iron deficiency anemia in inflammatory bowel disease. Gastroenterology. 2011; 141(3): 846–853.e1.
  55. Kulnigg-Dabsch S, Schmid W, Howaldt S, et al. Iron deficiency generates secondary thrombocytosis and platelet activation in IBD: the randomized, controlled thromboVIT trial. Inflamm Bowel Dis. 2013; 19(8): 1609–1616.
  56. Qunibi WY, Martinez C, Smith M, et al. A randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron for treatment of iron deficiency anaemia of non-dialysis-dependent chronic kidney disease patients. Nephrol Dial Transplant. 2011; 26(5): 1599–1607.
  57. Charytan C, Bernardo MV, Koch TA, et al. Intravenous ferric carboxymaltose versus standard medical care in the treatment of iron deficiency anemia in patients with chronic kidney disease: a randomized, active-controlled, multi-center study. Nephrol Dial Transplant. 2013; 28(4): 953–964.
  58. Onken JE, Bregman DB, Harrington RA, et al. Ferric carboxymaltose in patients with iron-deficiency anemia and impaired renal function: the REPAIR-IDA trial. Nephrol Dial Transplant. 2014; 29(4): 833–842.
  59. Macdougall IC, Bock AH, Carrera F, et al. FIND-CKD Study Investigators. FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia. Nephrol Dial Transplant. 2014; 29(11): 2075–2084.
  60. Ikuta K, Hanashi H, Hirai K, et al. Comparison of efficacy and safety between intravenous ferric carboxymaltose and saccharated ferric oxide in Japanese patients with iron-deficiency anemia due to hypermenorrhea: a multi-center, randomized, open-label noninferiority study. Int J Hematol. 2019; 109(1): 41–49.
  61. Van Wyck DB, Martens MG, Seid MH, et al. Intravenous ferric carboxymaltose compared with oral iron in the treatment of postpartum anemia: a randomized controlled trial. Obstet Gynecol. 2007; 110(2 Pt 1): 267–278.
  62. Breymann C, Milman N, Mezzacasa A, et al. FER-ASAP investigators. Ferric carboxymaltose vs. oral iron in the treatment of pregnant women with iron deficiency anemia: an international, open-label, randomized controlled trial (FER-ASAP). J Perinat Med. 2017; 45(4): 443–453.
  63. Seid MH, Derman RJ, Baker JB, et al. Ferric carboxymaltose injection in the treatment of postpartum iron deficiency anemia: a randomized controlled clinical trial. Am J Obstet Gynecol. 2008; 199(4): 435.e1–435.e7.
  64. Van Wyck DB, Mangione A, Morrison J, et al. Large-dose intravenous ferric carboxymaltose injection for iron deficiency anemia in heavy uterine bleeding: a randomized, controlled trial. Transfusion. 2009; 49(12): 2719–2728.
  65. Favrat B, Balck K, Breymann C, et al. Evaluation of a single dose of ferric carboxymaltose in fatigued, iron-deficient women--PREFER a randomized, placebo-controlled study. PLoS One. 2014; 9(4): e94217.
  66. Breymann C, Gliga F, Bejenariu C, et al. Comparative efficacy and safety of intravenous ferric carboxymaltose in the treatment of postpartum iron deficiency anemia. Int J Gynaecol Obstet. 2008; 101(1): 67–73.
  67. Seid MH, Butcher AD, Chatwani A. Ferric carboxymaltose as treatment in women with iron-deficiency anemia. Anemia. 2017; 2017: 9642027.
  68. Allen RP, Adler CH, Du W, et al. Clinical efficacy and safety of IV ferric carboxymaltose (FCM) treatment of RLS: a multi-centred, placebo-controlled preliminary clinical trial. Sleep Med. 2011; 12(9): 906–913.
  69. Trenkwalder C, Winkelmann J, Oertel W, et al. FCM-RLS Study Investigators. Ferric carboxymaltose in patients with restless legs syndrome and nonanemic iron deficiency: A randomized trial. Mov Disord. 2017; 32(10): 1478–1482.
  70. Hedenus M, Karlsson T, Ludwig H, et al. Intravenous iron alone resolves anemia in patients with functional iron deficiency and lymphoid malignancies undergoing chemotherapy. Med Oncol. 2014; 31(12): 302.
  71. Bailie GR, Mason NA, Valaoras TG. Safety and tolerability of intravenous ferric carboxymaltose in patients with iron deficiency anemia. Hemodial Int. 2010; 14(1): 47–54.
  72. Geisser P, Banké-Bochita J. Pharmacokinetics, safety and tolerability of intravenous ferric carboxymaltose: a dose-escalation study in volunteers with mild iron-deficiency anaemia. Arzneimittelforschung. 2010; 60(6a): 362–372.
  73. Barish CF, Koch T, Butcher A, et al. Safety and efficacy of intravenous ferric carboxymaltose (750 mg) in the treatment of iron deficiency anemia: two randomized, controlled trials. Anemia. 2012; 2012: 172104.
  74. Hussain I, Bhoyroo J, Butcher A, et al. Direct comparison of the safety and efficacy of ferric carboxymaltose versus iron dextran in patients with iron deficiency anemia. Anemia. 2013; 2013: 169107.
  75. Onken JE, Bregman DB, Harrington RA, et al. A multicenter, randomized, active-controlled study to investigate the efficacy and safety of intravenous ferric carboxymaltose in patients with iron deficiency anemia. Transfusion. 2014; 54(2): 306–315.
  76. Boomershine CS, Koch TA, Morris D. A blinded, randomized, placebo-controlled study to investigate the efficacy and safety of ferric carboxymaltose in iron-deficient patients with fibromyalgia. Rheumatol Ther. 2018; 5(1): 271–281.
  77. Ponikowski P, Kirwan BA, Anker SD, et al. AFFIRM-AHF investigators. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet. 2020; 396(10266): 1895–1904.
  78. Aksan A, Schoepfer A, Juillerat P, et al. Iron formulations for the treatment of iron deficiency anemia in patients with inflammatory bowel disease: a cost-effectiveness analysis in switzerland. Adv Ther. 2021; 38(1): 660–677.
  79. Filipescu D, Bănăţeanu R, Beuran M, et al. Perioperative patient blood management programme. Multidisciplinary recommendations from the . Rom J Anaesth Intensive Care. 2017; 24(2): 139–157.
  80. Drabinski T, Zacharowski K, Meybohm P, et al. Estimating the epidemiological and economic impact of implementing preoperative anaemia measures in the german healthcare system: the health economic footprint of patient blood management. Adv Ther. 2020; 37(8): 3515–3536.
  81. Breymann C, Milman N, Mezzacasa A, et al. FER-ASAP investigators. Ferric carboxymaltose vs. oral iron in the treatment of pregnant women with iron deficiency anemia: an international, open-label, randomized controlled trial (FER-ASAP). J Perinat Med. 2017; 45(4): 443–453.
  82. Neiser S, Rentsch D, Dippon U, et al. Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose. Biometals. 2015; 28(4): 615–635.
  83. Froessler B, Rueger AM, Connolly MP. Assessing the costs and benefits of perioperative iron deficiency anemia management with ferric carboxymaltose in Germany. Risk Manag Healthc Policy. 2018; 11: 77–82.
  84. Froessler B, Gajic T, Dekker G, et al. Treatment of iron deficiency and iron deficiency anemia with intravenous ferric carboxymaltose in pregnancy. Arch Gynecol Obstet. 2018; 298(1): 75–82.